首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Surface-grafted, environmentally responsive polymers have shown great promise for controlling adsorption and desorption of macromolecules and cells on solid surfaces. In the paper, we demonstrate that certain mixed self-assembled monolayers (SAMs) of oligo(ethylene glycol) (OEG) and methyl-terminated alkanethiolates on gold form surfaces with switchable hydrophobicity and tendency for protein adsorption and cellular attachment. At temperatures above 32 degrees C, SAMs with a surface density of approximately 50% OEG adsorbed significant amounts of pyruvate kinase and lysozyme, whereas below this temperature, these same SAMs were resistant to the adsorption of these proteins. Furthermore, protein layers adsorbed to these SAMs above 32 degrees C were removed upon rinsing with water below this temperature. Similar results were seen for attachment and release of the marine bacterium, Cobetia marina. The change from nonresistance to adsorptive state of the SAMs was concomitant with a change in advancing water contact angle. Vibrational sum frequency generation spectroscopy suggests that the temperature-induced changes coincide with a disorder-to-partial order transition of the hydrated methylene chains of the OEG moieties within the SAMs. Mixed OEG-methyl SAMs represent both a convenient means of controlling macromolecular and cellular adsorption within the laboratory and a useful tool for relating adsorption properties to molecular structures within the SAMs.  相似文献   

2.
Protein resistance of oligoether self-assembled monolayers (SAMs) on gold and silver surfaces has been investigated systematically to elucidate structural factors that determine whether a SAM will be able to resist protein adsorption. Oligo(ethylene glycol) (OEG)-, oligo(propylene glycol)-, and oligo(trimethylene glycol)-terminated alkanethiols with different chain lengths and alkyl termination were synthesized as monolayer constituents. The packing density and chemical composition of the SAMs were examined by XPS spectroscopy; the terminal hydrophilicity was characterized by contact angle measurements. IRRAS spectroscopy gave information about the chain conformation of specific monolayers; the amount of adsorbed protein as compared to alkanethiol monolayers was determined by ellipsometry. We found several factors that in combination or by themselves suppress the protein resistance of oligoether monolayers. Monolayers with a hydrophobic interior, such as those containing oligo(propylene glycol), show no protein resistance. The lateral compression of oligo(ethylene glycol) monolayers on silver generates more highly ordered monolayers and may cause decreased protein resistance, but does not necessarily lead to an all-trans chain conformation of the OEG moieties. Water contact angles higher than 70 degrees on gold or 65 degrees on silver reduce full protein resistance. We conclude that both internal and terminal hydrophilicity favor the protein resistance of an oligoether monolayer. It is suggested that the penetration of water molecules in the interior of the SAM is a necessary prerequisite for protein resistance. We discuss and summarize the various factors which are critical for the functionality of "inert" organic films.  相似文献   

3.
Monolayers from the newly synthesized compound methoxy-tri(ethylene glycol)-undecenyldimethylchlorosilane (CH3O(CH2CH2O)3(CH2)11Si(CH3)2Cl, MeO(EG)3C11DMS) and dodecyldimethylchlorosilane (DDMS), both pure and mixed, were prepared by self-assembly from organic solution in the presence of an organic base. The films obtained were characterized by advancing and receding contact angle measurements and ellipsometry to confirm the formation of self-assembled monolayers (SAMs). The resulting data on the covalently attached dimethylsilanes were compared to known oligo(ethylene glycol) (OEG)-terminated SAM systems based on terminal alkenes, thiolates or trihydrolyzable silanes. The composition of the mixed SAMs was found to depend directly and linearly on the composition of the silanization solution. Enhanced protein repellent properties were found for the SAMs using a variety of proteins, including the Ras Binding Domain (RBD), a protein with high relevance for cancer diagnostics. Roughly a RBD protein monolayer amount was adsorbed to silicon oxide surfaces silanized with DDMS or non-silanized silicon wafers, and in contrast, no RBD was adsorbed to surfaces silanized with MeO(EG)3C11DMS or to mixed monolayers consisting of DDMS and MeO(EG)3C11DMS if the content of OEG-silane overcame a critical content of X(EG) approximately 0.9.  相似文献   

4.
Self-assembled monolayers (SAMs) of methoxy-tri(ethylene glycol)- (EG(3)-OMe) and methyl-terminated alkanethiols (C(16)) adsorbed on polycrystalline gold were investigated by chemical force spectroscopy. Measurements were performed in aqueous electrolyte solutions depending on ionic strength and pH value. Charged and hydrophobic tips were employed as probes to mimic local patches of proteins and to study the interaction at the organic/liquid interface in detail. Force-distance curves reveal information about the origin of the observed interaction and the underlying mechanisms. The measurements confirm an effective negative surface charge to be present at the oligo(ethylene glycol) (OEG) and the methyl interface and suggest that the charges are due to the adsorption of hydroxyl ions from aqueous solution. pH-dependent measurements further support the robustness of the established charge associated with the OEG films. Its sign does not change over the whole range of investigated values between pH approximately 3.5 and approximately 10. In contrast, the hydrophobic self-assembled hexadecanethiol films on gold show an isoelectric point (IEP) around pH 4. While the mechanism of charge establishment appears to be similar for both SA films, the strength of hydrogen bonding to interfacial water, which acts as a template for hydroxyl ion adsorption, is likely to be responsible for the observed difference.  相似文献   

5.
Molecular simulations were performed to study a system consisting of protein (e.g., lysozyme) and self-assembled monolayers (SAMs) terminating with different chemical groups in the presence of explicit water molecules and ions. Mixed SAMs of oligo (ethylene glycol) [S(CH2)4(OCH2CH2)4OH, (OEG)] and hydroxyl-terminated SAMs [S(CH2)4OH] with a mole fraction of OEG at chiOEG = 0.2, 0.5, 0.8, and 1.0 were used in this study. In addition, methyl-terminated SAMs [S(CH2)11CH3] were also studied for comparison. The structural and dynamic behavior of hydration water, the flexibility and conformation state of SAMs, and the orientation and conformation of protein were examined. Simulation results were compared with those of experiments. It appears that there is a correlation between OEG surface resistance to protein adsorption and the surface density of OEG chains, which leads to a large number of tightly bound water molecules around OEG chains and the rapid mobility of hydrated SAM chains.  相似文献   

6.
A study of protein resistance of oligo(ethylene glycol) (OEG), HS(CH2)11(OCH2CH2)nOH (n = 2, 4, and 6), self-assembled monolayers (SAMs) on Au(111) surfaces is presented here. Hydroxyl-terminated OEG-SAMs are chosen to avoid the hydrophobic effect observed with methyl-terminated OEG-SAMs, particularly at high packing densities. The structure of the OEG-SAM surfaces is controlled by adjusting the assembly solvent. These SAMs were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Protein adsorption on these surfaces was investigated by surface plasmon resonance (SPR). OEG-SAMs assembled from mixed ethanol and water solutions show higher packing density on gold than those from pure ethanol solution. For EG2OH- and EG4OH-SAMs, proteins (i.e., fibrinogen and lysozyme) adsorb more on the densely packed SAMs prepared from mixed ethanol and water solutions, while EG6OH-SAMs generally resist protein adsorption regardless of the assembly solvent used.  相似文献   

7.
The interaction of proteins with semiconductors such as silicon and diamond is of great interest for applications such as electronic biosensing. We have investigated the use of covalently bound oligo(ethylene glycol), EG, monolayers on diamond and silicon to minimize nonspecific protein adsorption. Protein adsorption was monitored by fluorescence scanning as a function of the length of the ethylene glycol chain (EG3 through EG6) and the terminal functional group (methyl- versus hydroxyl-terminated EG3 monolayer). More quantitative measurements were made by eluting adsorbed avidin from the surface and measuring the intensity of fluorescence in the solution. The attachment chemistry of the tri(ethylene glycol) molecules and monolayer orientation was studied by X-ray photoelectron spectroscopy. Improvement in the selectivity of surfaces modified with EG functionality was demonstrated in two model biosensing assays. We find that high-quality EG monolayers are formed on silicon and diamond and that these EG3 monolayers are as effective as EG3 self-assembled monolayers on gold at resisting nonspecific avidin adsorption. These results show promise for use of silicon and diamond materials in many potential applications such as biosensing and medical implants.  相似文献   

8.
Self-assembled monolayers (SAMs) bearing pendant carbohydrate functionality are frequently employed to tailor glycan-specific bioactivity onto gold substrates. The resulting glycoSAMs are valuable for interrogating glycan-mediated biological interactions via surface analytical techniques, microarrays, and label-free biosensors. GlycoSAM composition can be readily modified during assembly by using mixed solutions containing thiolated species, including carbohydrates, oligo(ethylene glycol) (OEG), and other inert moieties. This intrinsic tunability of the self-assembled system is frequently used to optimize bioavailability and antibiofouling properties of the resulting SAM. However, until now, our nanoscale understanding of the behavior of these mixed glycoSAMs has lacked detail. In this study, we examined the time-dependent clustering of mixed sugar + OEG glycoSAMs on ultraflat gold substrates. Composition and surface morphologic changes in the monolayers were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. We provide evidence that the observed clustering is consistent with a phase separation process in which surface-bound glycans self-associate to form dense glycoclusters within the monolayer. These observations have significant implications for the construction of mixed glycoSAMs for use in biosensing and glycomics applications.  相似文献   

9.
Exposure of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) to UV light leads to the formation of aldehyde groups, leading to a simple one-step method for the introduction of reactive functional groups to protein-resistant surfaces. X-ray photoelectron spectroscopy has been used to demonstrate binding of amines to the modified surfaces, while surface plasmon resonance has shown that proteins are covalently bound. Modified OEG monolayers bind streptavidin at least as well as N-hydroxysuccinimidyl ester functionalized monolayers. Micrometer and nanometer-scale patterns are conveniently fabricated by exposing the monolayers using, respectively, a mask and a scanning near-field optical microscope.  相似文献   

10.
Temperature‐dependent polymers are intelligent materials. In this study, biocompatible and temperature‐dependent hyperbranched poly(glycidol)s (HPGs) were synthesized and characterized. HPGs were succinylated then modified with the oligo(ethylene glycol) monoethers (OEG) for example methoxy di(ethylene glycol), methoxy tri(ethylene glycol), methoxy tetra(ethylene glycol), ethoxy di(ethylene glycol), ethoxy tri(ethylene glycol), and methoxy poly(ethylene glycol)s at different ratios. These polymers exhibited phase transitions at a specific temperature (the cloud point), depending on the composition of OEG. By tuning the composition of OEG in the polymer, thermosensitive polymers with cloud point near body temperature were produced. Endothermic peaks of these polymers were observed in the vicinity of the cloud point. It is suggested that at temperatures below the cloud point the polymers formed hydrophobic shells and became more hydrophobic at temperatures above the cloud point. Because they exhibited no cytotoxicity, these temperature‐sensitive polymers are useful for biomedical applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4047–4054, 2010  相似文献   

11.
Novel surfaces derivatized with tertiary amine oxides have been prepared and tested for their ability to resist nonspecific protein adsorption. The oxidation of tertiary amines supported on triazine units was carried out using mCPBA to give a format allowing conjugation of biologically active ligands alongside them. Adsorption to these surfaces was tested and compared to adsorption to a set of commercial and custom oligo-/poly(ethylene glycol) (OEG/PEG) supports by challenging them with a protein display library presented on bacteriophage lambda. The new class of amine oxide surfaces is found to compare favorably with the performance of the OEG/PEG supports in the prevention of nonspecific binding.  相似文献   

12.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

13.
The trends in adsorption and oxidation of oligoethylene glycols (OEG), namely, di-, tri-, and tetraethylene glycol, on a Pt/Pt electrode are studied. Using a combination of methods of open-circuit potential shifts at the adsorption of organic species and anodic voltammetric curves, it is established that the OEG adsorption on a Pt/Pt electrode is accompanied by hydrogenation, dehydrogenation, and partial destruction of molecules and also that the amount and composition of accumulated adsorbate depend on the initial adsorption potential and the polymer structure. The OEG oxidation on a platinum electrode is considerably hindered as compared with ethylene glycol. The reaction rate decreases with an increase in the OEG molecular mass and is largely limited by the adsorption of molecules on the electrode surface, which is evidenced by the weak dependence of the rate on the potential in the double layer region.  相似文献   

14.
The adsorption on a mercury/aqueous solution interface of poly(ethylene glycol)s (PEGs) with molecular weights from 200 to 20 000 was studied by a.c. voltammetry in order to understand better the adsorption of linear components of fulvic acids on hydrophobic particles in natural waters, and the influence of their adsorption on voltammetric signals. As a general trend it was noted that the equilibrium adsorption constant increases with the molecular weight while the adsorption rate decreases. The values of the maximum surface concentration F. suggest a flat configuration for adsorbed molecules for all PEGs studied.  相似文献   

15.
The fouling resistance of oligo(ethylene glycol) (OEG)-terminated self-assembled monolayers (SAMs) of alkanethiolates on gold has been well established. Although hydration of the OEG chains seems key to OEG-SAM resistance to macromolecular adsorption and cellular attachment, the details of how hydration prevents biofouling have been inferred largely through computational methods. Because OEG-SAMs of different lengths exhibit differing degrees of fouling resistance, the interactions between water and OEG-SAMs leading to fouling resistance can be deduced by comparing the properties of fouling and nonfouling OEG-SAMs. While all OEG-SAMs had similar water contact angles, contact angles taken with glycerol were able to individuate between different OEG-SAMs and between fouling and nonfouling OEG-SAMs. Subsequent estimation of surface and interfacial tension using a colloidal model showed that nonfouling surfaces are associated with an increased negative interfacial tension between those OEG-SAMs that resisted attachment and water. Further analysis of this interfacial tension experimentally confirmed current mathematical models that cite OEG-water hydrogen-bond formation as a driving force behind short-term fouling resistance. Finally, we found a correlation between solid-water interfacial tension and packing density and molecular density of ethylene glycol.  相似文献   

16.
The nucleation and phase behavior of ultrathin D2O-ice overlayers have been studied on oligo(ethylene glycol) (OEG)-terminated and hydroxyl self-assembled monolayers (SAMs) at low temperatures in ultrahigh vacuum. Infrared reflection-absorption spectroscopy (IRAS) is used to characterize the ice overlayers, the SAMs, and the interactions occurring between the ice and the SAM surfaces. Spectral simulations, based on optical models in conjunction with Maxwell Garnett effective medium theory, point out the importance of including voids in the modeling of the ice structures, with void fractions reaching 60% in some overlayers. The kinetics of the phase transition from amorphous-like to crystalline-like ice upon isothermal annealing at 140 K is found to depend on the conformational state of the supporting OEG SAM surface. The rate is fast on the helical OEG SAMs and slow on the corresponding all-trans SAMs. This difference in kinetics is most likely due to a pronounced D2O interpenetration and binding to the all-trans segments of the ethylene glycol portion of the SAM. No such penetration and binding was observed on the helical OEG SAM.  相似文献   

17.
Phase equilibrium studies for semiconcentrated solutions of rodlike poly(γ‐benzyl L ‐glutamate) having oligo(ethylene glycol) as side chains (PBLG‐g‐OEG) have been investigated. The phase‐boundary concentrations in isotropic and anisotropic phases for N,N‐dimethylformamide (DMF) solution of PBLG‐g‐OEG with short side chains (PBLG2‐g‐380) are higher than those for solution of PBLG‐g‐OEG with long side chains (PBLG2‐g‐770). The lattice theory and the scaled particle theory for nematic solution, which don't distinguish the molecular architecture of the rodlike polymer, cannot explain this experimental result. Repulsive interaction between rodlike polymers by means of the attached side chains is proposed for the molecular orientation of PBLG‐g‐OEG in anisotropic state in order to describe the experimental result. Ternary phase diagrams of PBLG‐g‐OEG/poly(ethylene glycol) (PEG)/DMF show that the miscibility of rodlike PBLG‐g‐OEG and coiled PEG is most enhanced in the system of PBLG2‐g‐770, which has longest and largest amount of side chains. This experimental observation is explained by using the calculation based on the lattice theory and the repulsive interaction of side chains proposed above. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1331–1340, 2000  相似文献   

18.
The structure of mixed nonionic surfactant monolayers of monodecyl hexaethylene glycol (C10E6) and monotetradecyl hexaethylene glycol (C14E6) adsorbed at the air-water interface has been determined by specular neutron reflectivity. Using partial isotopic labeling (deuterium for hydrogen) of the alkyl and ethylene oxide chains of each surfactant, the distribution and relative positions of the chains at the interface have been obtained. The packing of the two different alkyl chain lengths results in structural changes compared to the pure surfactant monolayers. This results in changes in the relative positions of the alkyl chains and of the ethylene oxide chains at the interface. The role of the alkyl chain length is contrasted with that of the ethylene oxide chain length, determined from results reported previously on the nonionic surfactant mixture of monododecyl triethylene glycol (C12E3) and monododecyl octaethylene glycol (C12E8).  相似文献   

19.
Molecular dynamics simulations of peptide-surface interactions   总被引:5,自引:0,他引:5  
Proteins, which are bioactive molecules, adsorb on implants placed in the body through complex and poorly understood mechanisms and directly influence biocompatibility. Molecular dynamics modeling using empirical force fields provides one of the most direct methods of theoretically analyzing the behavior of complex molecular systems and is well-suited for the simulation of protein adsorption behavior. To accurately simulate protein adsorption behavior, a force field must correctly represent the thermodynamic driving forces that govern peptide residue-surface interactions. However, since existing force fields were developed without specific consideration of protein-surface interactions, they may not accurately represent this type of molecular behavior. To address this concern, we developed a host-guest peptide adsorption model in the form of a G(4)-X-G(4) peptide (G is glycine, X is a variable residue) to enable determination of the contributions to adsorption free energy of different X residues when adsorbed to functionalized Au-alkanethiol self-assembled monolayers (SAMs). We have previously reported experimental results using surface plasmon resonance (SPR) spectroscopy to measure the free energy of peptide adsorption for this peptide model with X = G and K (lysine) on OH and COOH functionalized SAMs. The objectives of the present research were the development and assessment of methods to calculate adsorption free energy using molecular dynamics simulations with the GROMACS force field for these same peptide adsorption systems, with an oligoethylene oxide (OEG) functionalized SAM surface also being considered. By comparing simulation results to the experimental results, the accuracy of the selected force field to represent the behavior of these molecular systems can be evaluated. From our simulations, the G(4)-G-G(4) and G(4)-K-G(4) peptides showed minimal to no adsorption to the OH SAM surfaces and the G(4)-K-G(4) showed strong adsorption to the COOH SAM surface, which is in agreement with our SPR experiments. Contrary to our experimental results, however, the simulations predicted a relatively strong adsorption of G(4)-G-G(4) peptide to the COOH SAM surface. In addition, both peptides were unexpectedly predicted to adsorb to the OEG surface. These findings demonstrate the need for GROMACS force field parameters to be rebalanced for the simulation of peptide adsorption behavior on SAM surfaces. The developed methods provide a direct means of assessing, modifying, and validating force field performance for the simulation of peptide and protein adsorption to surfaces, without which little confidence can be placed in the simulation results that are generated with these types of systems.  相似文献   

20.
We present and characterize a mixed self-assembled monolayer (SAM) consisting of single-stranded oligonucleotide (ssDNA)- and oligo(ethylene glycol) (OEG)-terminated thiols. The ssDNA/OEG SAMs are prepared by simultaneous coadsorption from a common thiol solution over a broad range of compositions. Electron spectroscopy for chemical analysis (ESCA) is used to measure the surface coverage of ssDNA, whereas surface plasmon resonance (SPR) sensor is used to measure the hybridization of complementary ssDNA and protein resistance. Through the complementary use of these techniques, we find that the composition of OEG in the assembly solution controls a key parameter: the surface coverage of ssDNA on the surface. There is evidence that it influences the orientation of the immobilized ssDNA probes. Lower OEG concentrations yield a surface with higher ssDNA coverage and less favorable orientation, whereas higher OEG concentrations produce a surface with lower DNA coverage and more favorable orientation. Competition between these two effects controls the hybridization efficiency of the ssDNA surface. Compared to ssDNA surfaces prepared with other diluent thiols, the use of OEG improves the protein resistance of the surface, making it more broadly applicable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号