首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hydrogenolysis of the scorpionate‐supported barium alkyl complex (TpAd,iPr)Ba[CH(SiMe3)2](THF) (TpAd,iPr=hydrotris(3‐adamantyl‐5‐isopropyl‐pyrazolyl)borate) afforded the dinuclear barium hydrido complex [(TpAd,iPr)Ba(μ‐H)]2 ( 2 ), which was characterized by NMR spectroscopy and single‐crystal X‐ray analysis. Exposure of 2 with 1 atm of CO resulted in a reductive coupling process to form the cis‐ethendiolate dianion ( 3 ). Reaction of 2 with one equivalent of PhC≡C−C≡CPh gave barium 1,4‐diphenyl‐2‐butyne‐1,4‐diyl complex {[(TpAd,iPr)Ba]2(PhCH−C≡C−CHPh) ( 4 ).  相似文献   

2.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   

3.
Crystals of the zwitterionic copper(I) π‐complex [(HC≡CCH2NH3)Cu2Br3] have been synthesized by interaction of CuBr with [HC≡CCH2NH3]Br in aqueous solution (pH < 1) and X‐ray studied. The crystals are monoclinic: space group P21/n, a = 6.722(4), b = 12.818(8), c = 9.907(3) Å, β = 100.25(4)°, V = 840.0(8) Å3, Z = 4, R = 0.0592 for 3015 reflections. The crystal structure of the π‐complex contains isolated [(HC≡CCH2NH3)+(Cu2Br3)?]2 units which are incorporated into a framework by strong hydrogen N–H···Br and C≡C–H···Br bonds. The length of π‐coordinated propargylammonium C≡C bond is equal 1.216(8) Å and Cu(I)–(C≡C) distance equals 1.958(5) Å.  相似文献   

4.
Treatment of Co4(CO)12 with an excess of trimethylsilylacetylene (TMSA) in the presence of tri(2‐thienyl)phosphine in THF at 25 °C for 2 hours yielded six compounds. Two pseudo‐octahedral, alkyne‐bridged tetracobalt clusters, [Co44‐η2‐HC≡CSiMe3)(CO)10(μ‐CO)2] ( 4 ) and [Co44‐η2‐HC≡CSiMe3)‐(CO)9(μ‐CO)2{P(C4H4S)3}] ( 6 ), along with an alkyne‐bridged dicobalt complex, [Co2(CO)5(μ‐HC≡CSiMe3)‐{P(C4H4S)3}] ( 5 ), were obtained as new compounds. The addition of the thienylphosphine ligand, in fact, facilitates the reaction rate. Reaction of an alkyne‐bridged dicobalt complex, [(η2‐H‐C≡C‐SiMe3)Co2(CO)6] ( 3 ), with a bi‐functional ligand, PPh(‐C≡C‐SiMe3)2, yielded an unexpected six‐membered, cyclic compound, {(Ph)(Me3Si‐C≡C)P‐[(η2‐C≡C‐SiMe3)Co2(CO)5]}2 ( 7 ). All of these new compounds were characterized by spectroscopic means; the solid‐state structures of ( 5 ), ( 6 ) and ( 7 ) have been established by X‐ray crystallography.  相似文献   

5.
The current library of amidinate ligands has been extended by the synthesis of two novel dimethylamino-substituted alkynylamidinate anions of the composition [Me2N−CH2−C≡C−C(NR)2] (R = iPr, cyclohexyl (Cy)). The unsolvated lithium derivatives Li[Me2N−CH2−C≡C−C(NR)2] ( 1 : R = iPr, 2 : R = Cy) were obtained in good yields by treatment of in situ-prepared Me2N−CH2−C≡C−Li with the respective carbodiimides, R−N=C=N−R. Recrystallization of 1 and 2 from THF afforded the crystalline THF adducts Li[Me2N−CH2−C≡C−C(NR)2] ⋅ nTHF ( 1 a : R = iPr, n=1; 2 a : R = Cy, n=1.5). Precursor 2 was subsequently used to study initial complexation reactions with selected di- and trivalent transition metals. The dark red homoleptic vanadium(III) tris(alkynylamidinate) complex V[Me2N−CH2−C≡C−C(NCy)2]3 ( 3 ) was prepared by reaction of VCl3(THF)3 with 3 equiv. of 2 (75 % yield). A salt-metathesis reaction of 2 with anhydrous FeCl2 in a molar ratio of 2 : 1 afforded the dinuclear homoleptic iron(II) alkynylamidinate complex Fe2[Me2N−CH2−C≡C−C(NCy)2]4 ( 4 ) in 69 % isolated yield. Similarly, treatment of Mo2(OAc)4 with 3 or 4 equiv. of 2 provided the dinuclear, heteroleptic molybdenum(II) amidinate complex Mo2(OAc)[Me2N−CH2−C≡C−C(NCy)2]3 ( 5 ; yellow crystals, 50 % isolated yield). The cyclohexyl-substituted title compounds 2 a , 4 , and 5 were structurally characterized through single-crystal X-ray diffraction studies.  相似文献   

6.
The facile synthesis of a stable and isolable compound with a fluoroalkynyl group, M−C≡CF, is reported. Reaction of [Ru(C≡CH)(η5‐C5Me5)(dppe)] with an electrophilic fluorinating agent (NFSI) results in the formation of the fluorovinylidene complex [Ru(=C=CHF)(η5‐C5Me5)(dppe)][N(SO2Ph)2]. Subsequent deprotonation with LiN(SiMe3)2 affords the fluoroalkynyl complex [Ru(C≡CF)(η5‐C5Me5)(dppe)]. In marked contrast to the rare and highly reactive examples of fluoroalkynes that have been reported previously, this compound can be readily isolated and structurally characterized. This has allowed the structure and bonding in the CCF motif to be explored. Further electrophilic fluorination of this species yields the difluorovinylidene complex [Ru(C=CF2)(η5‐C5Me5)(dppe)][N(SO2Ph)2].  相似文献   

7.
On the Oxidative Addition of 1-Halogenalk-1-ynes – Synthesis and Structure of Phenylalkynylpalladium Complexes [Pd(PPh3)4] ( 2 ) reacts with IC≡CPh and ClC≡CPh in the sense of an oxidative addition to give trans-[Pd(C≡CPh)X(PPh3)2] (X = I: 3 a , X = Cl: 3 b ). As side products trans-[PdX2(PPh3)2] (X = I: 4 a , X = Cl: 4 b ; < 10%) and PhC≡C–C≡CPh ( 5 ; X = I: ca 30%, X = Cl: < 4%) are formed. 3 a and 3 b were characterized by NMR (1H, 13C, 31P) and IR spectroscopies as well as by X-ray single-crystal structure analyses. In the crystals of 3 a and 3 b isolated molecules were found. The Pd–C≡C–Ph unit is linear in 3 a and approximately linear in 3 b [Pd–C≡C 174.2(6)°, C≡C–C 179,0(7)°].  相似文献   

8.
The reaction dynamics for C–Br dissociation within BrH2C–C≡CH(ads) adsorbed on an Ag(111) surface has been investigated by combining density functional theory-based molecular dynamics simulations with short-time Fourier transform (STFT) analysis of the dipole moment autocorrelation function. Two possible reaction pathways for C–Br scission within BrH2C–C≡CH(ads) have been proposed on the basis of different initial structural models. Firstly, the initial perpendicular orientation of adsorbed BrH2C–C≡CH(ads) with a stronger C–Br bond will undergo dynamic rotation leading to the final parallel orientation of BrH2C–C≡CH(ads) to cause the C–Br scission, namely, an indirect dissociation pathway. Secondly, the initial parallel orientation of adsorbed BrH2C–C≡C(ads) with a weaker C–Br bond will directly cause the C–Br scission within BrH2C–C≡CH(ads), namely, a direct dissociation pathway. To further investigate the evolution of different vibrational modes of BrH2C–C≡CH(ads) along these two reaction pathways, the STFT analysis is performed to illustrate that the infrared (IR) active peaks of BrH2C–C≡CH(ads) such as vCH2 [2956 cm?1(s) and 3020 cm?1(as)], v≡CH (3320 cm?1) and vC≡C (2150 cm?1) gradually vanish as the rupture of C–Br bond occurs and then the resulting IR active peaks such as C=C=C (1812 cm?1), ω-CH2 (780 cm?1) and δ-CH (894 cm?1) appear due to the formation of H2C=C=CH(ads) which are in a good agreement with experimental reflection adsorption infrared spectrum (RAIRS) at temperatures of 110 and 200 K, respectively. Finally, the total energy profiles indicate that the reaction barriers for the scission of C–Br within BrH2C–C≡CH(ads) along both direct and indirect dissociation pathways are very close due to a similar rupture of C–Br bond leading to a similar transition state.  相似文献   

9.
A short survey on the fascinating history of mercury fulminate is given. The crystal structure of Hg(CNO)2 has been determined using single crystal X‐ray diffraction. Mercury fulminate crystallizes in an orthorhombic cell, space group Cmce with a = 5.3549(2), b = 10.4585(5), c = 7.5579(4) Å and Z = 4. The distances and angles in the O‐N≡C‐Hg‐C≡N‐O molecule are Hg‐C 2.029(6) Å, C≡N 1.143(8) Å, N‐O 1.248(6) Å and C‐Hg‐C 180.0(1)°, Hg‐C≡N 169.1(5)°, C≡N‐O 179.7(6)°. Each mercury atom is surrounded by two oxygen atoms from neighbouring Hg(CNO)2 molecules with a nonbonding distance of Hg···O 2.833(4) Å. The Hg‐C bond lengths in the linear Hg(CNO)2 molecules are shorter than those in the tetrahedral complex [Hg(CNO)4]2?. This refers to a large contribution of the 6s orbital in the Hg‐C bonds of Hg(CNO)2. The results of the X‐ray powder investigation on Hg(CNO)2 are also reported.  相似文献   

10.
Syntheses and Structure of Chiral Metallatetrahedron Complexes of the Type [Re2(M1PPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M1 = Ag, Au; M2 = Cu, Ag, Au) From the reaction of Li[Re2(μ‐H)(μ‐PCy2)(CO)7(C(Ph)O)] ( 1 ) with Ph3AuC≡CPh both benzaldehyde and the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 2a ) were obtained in high yield. The complex anion was isolated as its PPh4‐salt 2b . The latter reacts with coinage metal complexes PPh3M2Cl [M2 = Cu, Ag, Au] to give chiral heterometallatetrahedranes of the general formula [Re2(AuPPh3)(M2PPh3)(μ‐PCy2)(CO)7C≡CPh] (M2 = Cu 3a , Ag 3b , Au 3c ). The corresponding complex [Re2(AgPPh3)2(μ‐PCy2)(CO)7C≡CPh] ( 3d ) is obtained from the reaction of [Re2(AgPPh3)2(μ‐PCy2)(CO)7Cl] ( 4 ) with LiC≡CPh. 3d undergoes a metathesis reaction in the presence of PPh3CuCl giving [Re2(AgPPh3)(CuPPh3)(μ‐PCy2)(CO)7C≡CPh] ( 3e ) and PPh3AgCl. Analogous metathesis reactions are observed when 3c is reacted with PPh3AgCl or PPh3CuCl giving 3a or 3b , respectively. The reaction of 1 with PPh3AuCl gives benzaldehyde and Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5a ) which upon reaction with PhLi forms the trinuclear complex Li[Re2(AuPPh3)(μ‐PCy2)(CO)7Ph] ( 6a ). Again this complex was isolated as its PPh4‐salt 6b . In contrast to 2b , 6b reacts with one equivalent of Ph3PAuCl by transmetalation to give Ph3PAuPh and PPh4[Re2(AuPPh3)(μ‐PCy2)(CO)7Cl] ( 5b ). The X‐ray structures of the compounds 3a , 3b , 3e and 4 are reported.  相似文献   

11.
A case study on the effect of the employment of two different NHC ligands in complexes [Ni(NHC)2] (NHC=iPr2ImMe 1Me , Mes2Im 2 ) and their behavior towards alkynes is reported. The reaction of a mixture of [Ni2(iPr2ImMe)4(μ-(η2 : η2)-COD)] B / [Ni(iPr2ImMe)2(η4-COD)] B’ or [Ni(Mes2Im)2] 2 , respectively, with alkynes afforded complexes [Ni(NHC)22-alkyne)] (NHC=iPr2ImMe: alkyne=MeC≡CMe 3 , H7C3C≡CC3H7 4 , PhC≡CPh 5 , MeOOCC≡CCOOMe 6 , Me3SiC≡CSiMe3 7 , PhC≡CMe 8 , HC≡CC3H7 9 , HC≡CPh 10 , HC≡C(p-Tol) 11 , HC≡C(4-tBu-C6H4) 12 , HC≡CCOOMe 13 ; NHC=Mes2Im: alkyne=MeC≡CMe 14 , MeOOCC≡CCOOMe 15 , PhC≡CMe 16 , HC≡C(4-tBu-C6H4) 17 , HC≡CCOOMe 18 ). Unusual rearrangement products 11 a and 12 a were identified for the complexes of the terminal alkynes HC≡C(p-Tol) and HC≡C(4-tBu-C6H4), 11 and 12 , which were formed by addition of a C−H bond of one of the NHC N-iPr methyl groups to the C≡C triple bond of the coordinated alkyne. Complex 2 catalyzes the cyclotrimerization of 2-butyne, 4-octyne, diphenylacetylene, dimethyl acetylendicarboxylate, 1-pentyne, phenylacetylene and methyl propiolate at ambient conditions, whereas 1Me is not a good catalyst. The reaction of 2 with 2-butyne was monitored in some detail, which led to a mechanistic proposal for the cyclotrimerization at [Ni(NHC)2]. DFT calculations reveal that the differences between 1M e and 2 for alkyne cyclotrimerization lie in the energy profile of the initiation steps, which is very shallow for 2 , and each step is associated with only a moderate energy change. The higher stability of 3 compared to 14 is attributed to a better electron transfer from the NHC to the metal to the alkyne ligand for the N-alkyl substituted NHC, to enhanced Ni-alkyne backbonding due to a smaller CNHC−Ni−CNHC bite angle, and to less steric repulsion of the smaller NHC iPr2ImMe.  相似文献   

12.
Crystals of anionic π-complex Cs[CuCl2(HOCH2C≡CCH2OH)] ? H2O were synthesized by reaction of 2-butyne-1,4-diol with CuCl in a saturated aqueous solution of CsCl at 90°C and studied by X-ray diffraction analysis. The crystals are triclinic (space group \(P\bar 1\) ; a = 10.155(4) Å, b = 7.828(4) Å, c = 7.115(3) Å, α = 102.62(4)°, β = 100.77(3)°, γ = 106.71(4)°, V = 509(1) Å3, Z = 2) and consist of stacks of individual anions [CuCl2(HOCH2C≡CCH2OH)]? and hydrated [Cs ? H2O]+ cations between the stacks. The Cu(I) atom has trigonal surrounding of two Cl atoms and the C≡C bond of 2-butyne-1,4-diol molecule. The Cu-(C≡C) distance in the π-core is 1.905(8) Å; the C≡C bond is elongated to 1.223(11) Å. In addition to hydrogen bonds O-H?Cl, crystals of the complex also contain O(w)?H-O and O(w)?Cl bonds stabilizing their structure.  相似文献   

13.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

14.
Tetrakis(p‐tolyl)oxalamidinato‐bis[acetylacetonatopalladium(II)] ([Pd2(acac)2(oxam)]) reacted with Li–C≡C–C6H5 in THF with formation of [Pd(C≡C–C6H5)4Li2(thf)4] ( 1a ). Reaction of [Pd2(acac)2(oxam)] with a mixture of 6 equiv. Li–C≡C–C6H5 and 2 equiv. LiCH3 resulted in the formation of [Pd(CH3)(C≡C–C6H5)3Li2(thf)4] ( 2 ), and the dimeric complex [Pd2(CH3)4(C≡C–C6H5)4Li4(thf)6] ( 3 ) was isolated upon reaction of [Pd2(acac)2(oxam)] with a mixture of 4 equiv. Li–C≡C–C6H5 and 4 equiv. LiCH3. 1 – 3 are extremely reactive compounds, which were isolated as white needles in good yields (60–90%). They were fully characterized by IR, 1H‐, 13C‐, 7Li‐NMR spectroscopy, and by X‐ray crystallography of single crystals. In these compounds Li ions are bonded to the two carbon atoms of the alkinyl ligand. 1a reacted with Pd(PPh3)4 in the presence of oxygen to form the already known complexes trans‐[Pd(C≡C–C6H5)2(PPh3)2] and [Pd(η2‐O2)(PPh3)2]. In addition, 1a is an active catalyst for the Heck coupling reaction, but less active in the catalytic Sonogashira reaction.  相似文献   

15.
The titanocene acetylene complex [Cp*2Ti(η2-Me3SiC≡CSiMe3)] ( 14 ) reacts with 1-alkynes such as phenylacetylene ( 15 a ), 1-hexyne ( 15 b ), 1-dodecyne ( 15 c ) and trimethylsilylacetylene ( 15 d ) by ligand exchange and proton shift, to yield exclusively the 1-alkenyltitanocene acetylides [Cp*2Ti(CH=CHR)(C≡CR)] ( 21 ) (R = Ph ( 21 a ), CH3(CH2)3 ( 21 b ), CH3(CH2)9 ( 21 c ), SiMe3 ( 21 d )). The X-ray structure of 21 a is presented. In reaction of acetylene HC≡CH ( 15 e ) with 14 other products are formed. However, no intermediates, like [Cp*2Ti(η2-RC≡CH)] ( 17 ), [Cp*2Ti(H)C≡CR] ( 17 ) or [Cp*2Ti=C=CHR] ( 22 ) in reactions of 14 with 15 are detectable. On the other hand, a stable titanocenehydride [Cp*2Ti(H)OCH3] ( 23 ) is obtained by oxidative addition of CH3OH with Cp*2Ti, generated from 14 .  相似文献   

16.
Dicopper diacetylide Cu-C≡C-C≡C-Cu, prepared from butadiyne has been studied by FT-IR spectroscopy in comparison to dicopper acetylide Cu-C≡C-Cu. Upon ageing by exposure to air at room temperature, Cu-C≡C-Cu has been transformed into Cu-C≡C-C≡C-Cu as demonstrated by FT-IR spectroscopy and this compound is further transformed on standing in air. A special kind of solid state oxidative coupling reaction occurs so that polyynes chains are formed in these aged solids. It is shown that the FT-IR spectrum of copper acetylide prepared from ammonia solutions of Cu+ and Cu2+ ions is comparable to that of air oxidized Cu-C≡C-Cu (and Cu-C≡C-C≡C-Cu) prepared exclusively from Cu+ ions in presence of a reducing agent demonstrating that Cu2+ ions display the same oxidizing effect as oxygen causing coupling reactions in solution and producing Cu-C≡C-C≡C-Cu.Cu-C≡C-Cu oxidized at 60–70°C with CuCl2 produces a product which could be formulated as Cu(C≡C)20Cu; FT-IR absorption at 1950 cm−1 could suggest the presence of cumulenic carbon chain although acetylenic carbon chains cannot be excluded completely.  相似文献   

17.
The synthesis of [Ti6O4(OiPr)8(O2CPh)8] ( 3 ) and [RuCl(N≡CR)5][RuCl4(N≡CR)2] ( 4a , R = Me; 4b , R = Ph), [Ru(N≡CPh)6][RuCl4(N≡CPh)2] ( 5 ) and [H3O][RuCl4(N≡CMe)2] ( 7a ) is discussed. Crystallization of 5 from CH2Cl2 gave trans-[RuCl2(N≡CPh)4] ( 6 ). The solid-state structures of 3 , 4a , b , 5 , 6 and 7a are reported. Complex 4b forms a 3D network, while 6 displays a 2D structure, due to π-interactions between the benzonitrile ligands. The (spectro)electrochemical behavior of 4a , b and 6 was studied at 25 and –72 °C and the results thereof are compared with [NEt4][RuCl4(N≡CMe)2] ( 7b ) and [RuCl(N≡CPh)5][PF6] ( 8 ). The electrochemical response of the cation and the anion in 4a , b are independent from each other. [RuCl(N≡CR)5]+ possesses one reversible RuII/RuIII process. However, [RuCl4(N≡CMe)2] was shown to be prone to ligand exchange and disproportionation upon formation of either a RuIV and RuII species at 25 °C, while at –72 °C the rapid conversion of the electrochemically formed species is hindered. In situ IR and UV/Vis/NIR studies confirmed the respective disproportionation reaction products of the aforementioned oxidation and reduction, respectively.  相似文献   

18.
The first mononuclear π-complex of copper(I) chloride with monosubstituted alkyne of the formula [(C9H16NH2(OH)C≡CH)CuCl2] was obtained in the system CuCl-HCl-H2O-(C9H16NH2(OH)C≡CH)Cl (C9H16NH 2 + (OH)C≡CH is the 4-ethynyl-4-hydroxy-2,2,6,6-tetramethylpiperidinium cation) and studied by single-crystal X-ray and X-ray powder diffraction. The crystals are monoclinic: a = 16.868(8) Å, b = 13.177(8) Å, c = 13.32(1) Å, γ = 103.50(4)°, space group P21/b, Z = 8. The structure of the complex contains two crystallographically independent zwitterionic entities of the formula [(C9H16NH2(OH)C≡CH)CuCl2], which result from π-coordination of the potential π-bidentate bond C≡C of the organic cation to one Cu(I) atom of the inorganic anion CuCl 2 ? . The distances Cu-m (m is the midpoint of the C≡C bond) are 1.91(2) Å. Along with weak intermolecular hydrogen bonds ≡CH...Cl and intramolecular contacts OH...Cl, the structure is stabilized by a directed ionic interaction through strong NH...Cl bonds.  相似文献   

19.
The influence of the chemical substitution, crystal packing, and aurophilic interactions of the gold(I) acetylide complexes of the type (ArCOC≡C)nAuPEt3 (n=1,2) on their luminescent properties were examined. All described complexes undergo ligand scrambling in solution, which results in the formation of stable, easily isolated crystals that contain [ArCO(C≡C)n]2Au(Et3P)2Au+ homoleptic species. In particular, we observed that the (benzoylacetylide)gold(I) complex yields three crystal forms with strikingly different luminescence properties. We monitored the conversion pathway for these forms: an orange luminescent form of homoleptic complex upon drying undergoes spontaneous transformation to bright green fluorescent form and finally to the weakly blue emissive one. In addition, we report a rare example of a helical arrangement of Au⋅Au⋅Au chains that are observed for the first time in acetylide gold(I) complexes in the case of heteroleptic (benzoylacetylide)gold(I) complex. This is a very rare case in which crystal structures and ensuing electronic properties of the heteroleptic and AuI complexes could be directly compared.  相似文献   

20.
Oligosulfides derived from ethyne-1,2-dithiol were synthesized in up to 96% yield via insertion of elemental sulfur into the Na-Csp bond of sodium acetylides (HC≡CNa, NaC≡CSNa) in liquid ammonia, followed by hydrolysis and spontaneous oligomerization of ethynethiols, ethynedithiols, and mono-and bis-(polysulfanyl)ethynes (HC≡CSH, HSC≡CSH, HC≡CSxH, HSxC≡CSyH). The resulting polyenic oligosulfides were isolated as brown powders melting in the temperature range from 122 to 203°C and containing up to 77% of sulfur; they are sparingly soluble in organic solvents and are high-resistance semiconductors (10?13–10?14 S cm?1) possessing paramagnetic (1017–1018 spin g?1) and redox properties. According to the data of IR and ESR spectroscopy and cyclic voltammetry, the oligomers obtained consist mainly of different oligosulfide units, including oligothienothiophene structures. They also ensure a high discharge capacity (345–720 mA h g?1) of lithium sulfur rechargeable batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号