首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-soluble thermoresponsive polymers present either upper critical solution temperature(UCST) or lower critical solution tempe rature(LCST) depending on the location of their miscibility range with water at high temperatures or at low temperatures.Compared with LCST polymers,the water-soluble UCST polymers are still less explored until now.In this work three copolymers of P(AAm-co-GAA) were synthesized by copolymerizing two acrylamide monomers,acrylamide(AAm) and acrylamide functionalized with natural glycyrrhetinic acid(GAA),using reversible addition-fragmentation chain transfer(RAFT) polymerization.These copolymers exhibited the typical UCST thermoresponsive behavior,and their phase transition temperatures could be easily tuned to around 37℃ for potential biological applications.Moreover,the UCST of P(AAm-co-GAA) can be adjusted not only by the content of glycyrrhetinic acid(GA) and polymer concentrations,but also by the host-guest interactions between GA and cyclodextrins(β-and γ-CD).The suitable value of UCST and the biocompatible nature of GA and CDs may endow these copolymers with practical applications in biomedical chemistry.  相似文献   

2.
An upper critical solution temperature (UCST)‐type self‐oscillating polymer was designed that exhibited rhythmic soluble–insoluble changes induced by the Belousov–Zhabotinsky (BZ) reaction. The target polymers were prepared by conjugating Ru(bpy)3, a catalyst for the BZ reaction, to ureido‐containing poly(allylamine‐co‐allylurea) (PAU) copolymers. The Ru(bpy)3‐conjugated PAUs exhibited a UCST‐type phase‐transition behavior, and the solubility of the polymer changed in response to the alternation in the valency of Ru(bpy)3. The ureido content influences the temperature range of self‐oscillation, and the oscillation occurred at higher temperatures than conventional LCST‐type self‐oscillating polymers. Furthermore, the self‐oscillating behavior of the Ru‐PAU could be regulated by addition of urea, which is a unique tuning strategy. We envision that novel self‐oscillating polymers with widely tunable soluble‐insoluble behaviors can be rationally designed based these UCST‐type polymers.  相似文献   

3.
We developed a simple and improved expression for the Helmholtz energy of mixing which uses a Taylor series of an exponential function based on extending the Redlich-Kister expansion. This model incorporates the chain-length dependence of polymers and specific interactions such as hydrogen bonds. The proposed model can accurately predict most phase diagrams of various binary polymer solutions including upper critical solution temperature (UCST), lower critical solution temperature (LSCT), both UCST and LCST, and closed miscibility loops. Our model fits experimental data of the complex phase behavior of polymer solutions well.  相似文献   

4.
Thermally sensitive polymeric nanocarriers were developed to optimize the release profile of encapsulated compounds to improve treatment efficiency. However, when referring to thermally sensitive polymeric nanocarriers, this usually means systems fabricated from lower critical solution temperature (LCST) polymers, which have been intensively studied. To extend the field of thermally sensitive polymeric nanocarriers, we for the first time fabricated a polymeric drug delivery system having an upper critical solution temperature (UCST) of 43 °C based on an amphiphilic polymer poly(AAm‐co‐AN)‐g‐PEG. The resulting polymeric micelles could effectively encapsulate doxorubicin and exhibited thermally sensitive drug release both in vitro and in vivo. A drastically improved anticancer efficiency (IC50 decreased from 4.6 to 1.6 μg mL?1, tumor inhibition rate increased from 55.6 % to 92.8 %) was observed. These results suggest that UCST‐based drug delivery can be an alternative to thermally sensitive LCST‐based drug delivery systems for an enhanced antitumor efficiency.  相似文献   

5.
We have developed a new Flory‐Huggins model by adding a specific interaction parameter derived from a modified double‐lattice model for the Helmholtz energy of mixing for binary liquid mixtures. This model is very simple and could be easily integrated into engineering applications. Using this revised model, we can successfully describe the phase behavior of polymer solutions with an upper critical solution temperature (UCST), a lower critical solution temperature (LCST), both UCST and LCST, and a closed miscibility loop. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 162–167, 2010  相似文献   

6.
We describe the initial studies of the complex aqueous phase behavior of poly(trimethylene ether) glycol (PO3G), a renewably sourced polyether glycol. Cloud point measurement revealed that a low molecular weight PO3G exhibits both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in water in the temperature range between 30°C and 80°C. At low concentrations of PO3G, the polymer solutions exhibit LCST‐type phase behavior. In the intermediate concentration ranges, PO3G and water are immiscible. However, at higher concentrations of PO3G, the solutions show UCST‐type phase behavior. In addition, both the LCSTs and UCSTs can be easily tuned over a wide range by varying the amount of alcohol co‐solvents. These findings have potential applications in the design of personal care applications and in the development of thermosensitive “smart” materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The multi‐thermo‐responsive block copolymer of poly[2‐(2‐methoxyethoxy)ethyl methacrylate]‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PMEO2MA‐b‐PVEA) displaying phase transition at both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) in the alcohol/water mixture is synthesized by reversible addition‐fragmentation chain transfer polymerization. The poly[2‐(2‐methoxyethoxy)ethyl methacrylate] (PMEO2MA) block exhibits the UCST phase transition in alcohol and the LCST phase transition in water, while the poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PVEA) block shows the UCST phase transition in isopropanol and the LCST phase transition in the alcohol/water mixture. Both the polymer molecular weight and the co‐solvent/nonsolvent exert great influence on the LCST or UCST of the block copolymer. By adjusting the solvent character including the water content and the temperature, the block copolymer undergoes multiphase transition at LCST or UCST, and various block copolymer morphologies including inverted micelles, core‐corona micelles, and corona‐collapsed micelles are prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4399–4412  相似文献   

8.
We herein report the preparation of thermo- and redox-responsive branched polymers by the condensation reaction of three-armed oligo(ethylene glycol) (trisOEG) and cystamine (CA). The prepared branched polymers exhibited a soluble–insoluble transition at a lower critical solution temperature (LCST) and formed coacervate droplets through a liquid–liquid phase separation process. We then demonstrated control of the LCSTs of the branched polymers by varying the feed ratio of CA and the surrounding salt concentration close to body temperature. In addition, the trisOEG-cys x polymer formed coacervate droplets above the LCST, in which hydrophobic molecules were condensed. The redox response of the branched polymers was also investigated. Interestingly, the branched polymers degraded to low-molecular-weight materials (i.e., trisOEG) in the presence of dithiothereitol as a reducing agent through cleavage of the disulfide bond of CA. This facile preparation of branched polymers is expected to be valuable in the context of functional biomedical materials and modifiers for materials surfaces, such as the bases for drug delivery carriers and separation materials. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2623–2629  相似文献   

9.
Tetrafunctional porphyrins‐containing trithiocarbonate groups were synthesized by an ordinary esterification method. This tetrafunctional porphyrin (TPP‐CTA) could be used as a chain transfer agent in a controlled reversible addition‐fragmentation chain transfer (RAFT) radical polymerization to prepare well‐defined 4‐arm star‐shaped polymers. N,N‐Diethylacrylamide was polymerized using TPP‐CTA in 1,4‐dioxane. Poly(N,N‐diethylacrylamide) (PDEA) is known to be a thermo‐responsive polymer, and exhibits a lower critical solution temperature (LCST) in water. The star‐shaped PDEA polymer (TPP‐PDEA) was therefore also thermo‐responsive, as expected. The LCST of this polymer depended on its concentration in water, as confirmed by turbidity, dynamic light scattering (DLS), static light scattering (SLS), and 1H NMR measurements. The porphyrin cores were compartmentalized in PDEA shells in aqueous media. Below the LCST, the fluorescence intensity of TPP‐PDEA was about six times larger than that of a water‐soluble low molecular weight porphyrin compound (TSPP), whose fluorescence intensity was independent of temperature. Above the LCST, the fluorescence intensity of TPP‐PDEA decreased, while the intensity was about three times higher than that of TSPP. These observations suggested that interpolymer aggregation occurred due to the hydrophobic interactions of the dehydrated PDEA arm chains above the LCST, with self‐quenching of the porphyrin moieties arising from these interactions. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

10.
Multiresponsive polymers that can respond to several external stimuli are promising materials for a manifold of applications. Herein, a facile method for the synthesis of triple-responsive (pH, temperature, CO2) poly(N,N-diethylaminoethyl methacrylamide) by a post-polymerization amidation of poly(methyl methacrylate) (PMMA) is presented. Combined with trivalent counterions ([Fe(CN)6]3−) both an upper and lower critical solution temperature (UCST/LCST)-type phase behavior can be realized at pH 8 and 9. PMMA and PMMA-based block copolymers are readily accessible by living anionic and controlled radical polymerization techniques, which opens access to various responsive polymer architectures based on the developed functionalization method. This method can also be applied on melt-processed bulk PMMA samples to introduce functional, responsive moieties at the PMMA surface.  相似文献   

11.
Poly(2‐ureidoethylmethacrylate) (PUEMn) was synthesized via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization and following polymer reaction. We prepared two PUEMn samples with different degrees of polymerization (n = 100 and 49). The polymers exhibited upper critical solution temperature (UCST) in phosphate‐buffered saline (PBS) solution. The phase separation temperature (Tp) in PBS can be controlled ranging from 17 to 55 °C by changing molecular weight of the polymer, polymer concentration, and adding NaCl concentration. The polymers in PBS formed coacervate drops by liquid–liquid phase separations below Tp. Results of the dielectric relaxation measurement, the hydration number per monomeric unit was 5 above Tp. Based on a fluorescence study, the polymer formed slightly hydrophobic environments below Tp. The liquid–liquid phase separation was occurred presumably because of weak hydrophobic interactions and intermolecularly hydrogen bonding interactions between the pendant ureido groups. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2845–2854  相似文献   

12.
Most polymeric thermoresponsive hydrogels contract upon heating beyond the lower critical solution temperature (LCST) of the polymers used. Herein, we report a supramolecular hydrogel system that shows the opposite temperature dependence. When the non‐thermosesponsive hydrogel NaphtGel, containing dialkoxynaphthalene guest molecules, becomes complexed with the tetra cationic macrocyclic host CBPQT4+, swelling occurred as a result of host–guest complex formation leading to charge repulsion between the host units, as well as an osmotic contribution of chloride counter‐ions embedded in the network. The immersion of NaphtGel in a solution of poly(N‐isopropylacrylamide) with tetrathiafulvalene (TTF) end groups complexed with CBPQT4+ induced positive thermoresponsive behaviour. The LCST‐induced dethreading of the polymer‐based pseudorotaxane upon heating led to transfer of the CBPQT4+ host and a concomitant swelling of NaphtGel. Subsequent cooling led to reformation of the TTF‐based host–guest complexes in solution and contraction of the hydrogel.  相似文献   

13.
Poly(N,N‐diethylacrylamide) (PDEA) possesses a lower critical solution temperature (LCST) in aqueous media. The solution properties of PDEA at various temperatures have been characterized with techniques such as rheology and dynamic light scattering. There is a decrease in the coil size before the phase transition due to a coil‐to‐globule transition. At the LCST, rheological and dynamic light scattering studies have also confirmed an aggregation phenomenon. This aggregation modifies the rheological properties of the polymer solutions. High frequencies hinder the phase‐transition process and reduce the LCST of the polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1627–1637, 2003  相似文献   

14.
The stimuli-responsive polymers with upper critical solution temperatures(UCST) are highly attractive for drug delivery applications. However, the phase transition process of UCST polymer is usually characterized by turbidity measurement and electron microscopy, which are significantly restricted by low sensitivity and static observation. In contrary, the fluorescence technique has significant advantages in terms of high sensitivity, easy operation, and dynamic observation. However, the conventional fluorophores suffer from the drawbacks of aggregation-caused quenching(ACQ) after being encapsulated by UCST polymers, which are not suitable for direct visualization of the phase transition process. To tackle this challenge, we herein developed a series of UCST polymers based on polyacrylamides decorated with bile acid and aggregation-induced emission(AIE)-active tetraphenylethene(TPE) groups, which can be used for direct fluorescence monitoring of the phase transition process. Moreover, the AIE-active UCST polymers can serve as drug carriers, which can not only monitor the drug release process under thermal stimuli, but also verify the drug release by fluorescence recovery after thermal stimuli. It is expected that the AIE-active UCST polymers with self-monitoring ability are promising for biomedical applications.  相似文献   

15.
Marine mussels secret protein‐based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol‐functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate‐forming adhesives, mechanically improved nano‐ and micro‐composite adhesive hydrogels, as well as smart and self‐healing materials. Finally, we review the applications of catechol‐functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 9–33  相似文献   

16.
The gelation temperature and mechanical properties of aqueous ethylene glycol-decorated polyisocyanide solutions strongly depends on the length of the glycol tail. Copolymerisation of monomers with different tail lengths allows for precise engineering of the gel properties.  相似文献   

17.
Using equations which describe the concentration dependence of the specific viscosity of polymer solutions and the temperature dependence of intrinsic viscosity and of the Huggins viscosity parameter, conditions were sought for which solution viscosity increases with temperature (flow activation energy is negative). It was found that such an effect might appear near to the θ-temperature (regardless of the θ-temperature being LCST or UCST) particularly for polymers with high molecular weight. The concentration range depends on the system being endo- or exothermal. The conclusions are in agreement with experimental results.  相似文献   

18.
In this paper we would like to give a brief review about the extensibility of the liquid-liquid locus into the negativepressure region. Negative pressure states are hardly explored; most researchers believe that the pressure scale ends at p = 0.We would like to show that this is not true, the p = 0 point is not a special point for liquids, it can be "easily" crossed. We aregoing to give a few example, where the extension of liquid-liquid locus for polymer blends and solutions below p = 0 givesus some interesting results, like the merging of UCST and LCST branches in weakly interacting polymer solutions or thereason why most UCST blends exhibit pressure induced immiscibility. Also, we will see what happens with the immiscibilityisland of aqueous polymer solutions when -- reaching the critical molar mass -- it "disappears".  相似文献   

19.
Polyurethane (PU) containing poly(propylene glycol) (PPG) or poly(tetramethylene oxide) (PTMG) soft segments have been prepared by two‐step condensation polymerization. The former (PPG‐PU) with a lower critical solution temperature (LCST) at ~21 °C can change from hydrophilic to hydrophobic, whereas the latter (PTMG‐PU) is hydrophobic at a temperature above 0 °C. The adsorption of fibrinogen, bovine serum albumin, or lysozyme on such a PU surface in aqueous solution has been investigated by use of quartz crystal microbalance with dissipation (QCM‐D) and surface plasmon resonance (SPR) in real time. PPG‐PU surface exhibits protein resistance at a temperature below the LCST of PPG, but it significantly adsorbs proteins at a temperature above the LCST. On the other hand, the hydrophobic PTMG‐PU surface adsorb the proteins at any temperatures investigated, in contrast with the hydrated poly(ethylene glycol) exhibiting excellent protein resistance. The hydration and dehydration of the polymers at different temperatures were confirmed by Raman spectroscopy. Our study demonstrates that the protein resistance of polymers is determined by their hydration. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1987–1993, 2010  相似文献   

20.
We report the synthesis and investigation of a new type of photoresponsive block copolymers (BCPs). They were designed to comprise two water‐soluble polymers containing two different photoisomerizable moieties (either azobenzene and spiropyran or two different azobenzenes), with the two constituting blocks that, when separated, exhibit a lower critical solution temperature (LCST) in water and can shift their LCST in opposite directions upon photoisomerization (decrease of LCST for one polymer and increase for the other). A variety of such doubly photoresponsive BCPs were synthesized using either azobenzene‐ or spiropyran‐containing poly(N,N‐dimethylacrylamide) (PDMA), poly(N‐isopropylacrylamide) (PNIPAM) and poly[methoxydi(ethylene glycol) methacrylate] (PDEGMMA). Their thermal phase transition behaviors in aqueous solution before and after simultaneous photoreactions on the two blocks were investigated in comparison with their constituting blocks, by means of solution transmittance (turbidity) and variable‐temperature 1H NMR measurements. The results show that BCPs displayed a single LCST whose shift upon two photoisomerizations appeared to be determined by the competing and opposing photoinduced effects on the two blocks. Moreover, optically controlling the relative photoisomerization degrees of trans azobenzene‐to‐cis azobenzene and spiropyran‐to‐merocyanine could be used to tune the LCST of BCP solution. This study demonstrates the potential of exploring a more complex photoreaction scheme to optically control the solution properties of water‐soluble thermosensitive BCPs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4055–4066, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号