首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A zirconium terephthalate metal‐organic framework‐incorporated poly(N‐vinylcarbazole‐co‐divinylbenzene) monolith was fabricated in a capillary by a thermal polymerization method. The optimized monolith had a homogeneous structure, good permeability, and stability. The monolith could be used for the effective enrichment of fungicides through π‐π interactions, electrostatic forces, and hydrogen bonds. The potential factors that affect the extraction efficiency, including ionic strength, solution pH, sample volume, and eluent volume, were investigated in detail. The monolith‐based in‐tube solid‐phase microextraction coupled with ultra‐high‐performance liquid chromatography and high‐resolution Orbitrap mass spectrometry was performed for the analysis of five fungicides (pyrimethanil, tebuconazole, hexaconazole, diniconazole, and flutriafol) in environmental samples. Under the optimized conditions, the linear ranges were 0.005–5 ng/mL for pyrimethanil, 0.01–5 ng/mL for flutriafol, and 0.05–5 ng/mL for other fungicides, respectively, with coefficients of determination ≥0.9911. The limits of detection were 1.34–14.8 ng/L. The columns showed good repeatability (relative standard deviations ≤9.3%, n = 5) and desirable column‐to‐column reproducibility (relative standard deviations 5.3–9.4%, n = 5). The proposed method was successfully applied for the simultaneous detection of five fungicides in water and soil samples, with recoveries of 90.4–97.5 and 84.0–95.3%, respectively.  相似文献   

2.
Modified stainless‐steel wires with a layer of polyaniline conductive polymer were coated by electrochemical deposition with Zn/Al layered double hydroxide to make solid‐phase microextraction fibers. The coating layer was also electrochemically deposited on the inner surface of a stainless‐steel tube. Then, ten prepared fibers were put inside the inner coated tube to make a fiber‐in‐tube solid phase microextraction device. The device was applied for the extraction of caffeine (1,3,7‐trimethylxanthine) from domestic wastewater samples. Extraction conditions including extraction and desorption times, pH and ionic strength of the sample solution, and content of the organic desorption solvent were investigated and optimized. Under the optimized conditions, the fiber‐in‐tube solid phase microextraction exhibited excellent extraction efficiency toward caffeine. The precision of the method was evaluated. Average relative standard deviation of 5.7% (n = 6) for intraday analysis and 8.3% (n = 5) for interday analysis was obtained. The limits of detection and limits of quantification of the method (at signal to noise ratio of 3 and 10) were obtained as 0.14 and 0.37 ng/mL, respectively. The current study can provide new prospective applications of layered double hydroxide conductive polymer fiber coatings.  相似文献   

3.
A new type of adsorbent composed of magnetic three‐dimensional graphene coated with silver nanoparticles was synthesized by an electroless technique and used in the magnetic solid‐phase extraction of selected pesticides (fenitrothion, chlorpyrifos, and hexaconazole) before gas chromatography with a micro‐electron capture detector. The adsorbent was characterized using Fourier‐transform infrared spectroscopy, X‐ray diffraction, vibrating sample magnetometry, and field‐emission scanning electron microscopy. The important extraction parameters such as pH, adsorbent dose, extraction time, and desorption conditions were investigated. Under the optimal conditions, the analytical figures of merit were obtained as: linear dynamic range of 0.1–5 ng/g with determination coefficients of 0.991–0.996; limit of detection of 0.07–0.13 ng/g; limit of quantification of 0.242–0.448 ng/g; and the intraday and interday relative standard deviations (= 5 ng/g, = 3) were 3.8–8.7 and 6.6–8.9%, respectively. The developed method was successfully applied for analysis of the selected pesticides in tomato and grape with extraction recoveries in the range of 72.8–109.6%.  相似文献   

4.
《Electrophoresis》2018,39(14):1771-1776
An ionic liquid‐based headspace in‐tube liquid‐phase microextraction (IL‐HS‐ITLPME) in‐line coupled with CE is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. In the newly developed method, simply by placing a capillary injected with ionic liquids (IL) in the HS above the aqueous sample, volatile phenols were extracted into the IL acceptor phase in the capillary. After extraction, electrophoresis of the phenols in the capillary was carried out. Extraction parameters such as the extraction time, extraction temperature, ionic strength, volume of the sample solution, and IL types were systematically investigated. Under the optimized conditions, enrichment factors for four phenols were from 1510 to 1985. The proposed method provided a good linearity, low limits of detection (below 5.0 ng/mL), and good repeatability of the extractions (RSDs below 6.7%, n = 6). This method was then utilized to analyze two real environmental samples of Xiaoxi Lake and tap water, obtaining acceptable recoveries and precisions. Compared with the usual HS‐ITLPME for CE, IL‐HS‐ITLPME‐CE is a simple, low cost, fast, and environmentally friendly preconcentration technique.  相似文献   

5.
In this work, core/shell magnetic molecularly imprinted polymer nanoparticles were synthesized for extraction and pre‐concentration of valsartan from different samples and then it was measured with high‐performance liquid chromatography. For preparation of molecularly imprinted polymer nanoparticles, Fe3O4 nanoparticles were coated with tetraethyl orthosilicate and then functionalized with 3‐(trimethoxysilyl) propyl methacrylate. In the next step, molecularly imprinted polymer nanoparticles were synthesized under reflux and distillation conditions via polymerization of methacrylic acid, valsartan (as a template), azobisisobutyronitrile and ethylene glycol dimethacrylate as cross linking. The properties of molecularly imprinted polymer nanoparticle were investigated by FTIR spectroscopy, field emission scanning electron microscopy, and X‐ray diffraction. Box‐Behnken design with the aid of desirability function was used for optimizing the effect of variables such as the amounts of molecularly imprinted polymer nanoparticles, time of sonication, pH, and volume of methanol on the extraction percentage of valsartan. According to the obtained results, the affecting variables extraction condition were set as 10 mg of adsorbent, 16 min for sonication, pH = 5.5 and 0.6 mL methanol. The obtained linear response (r2 > 0.995) was in the range of 0.005–10 µg/mL with detection limit 0.0012 µg/mLand extraction recovery was in the range of 92–95% with standard deviation less than 6% (n = 3).  相似文献   

6.
Magnetic dispersive solid‐phase extraction followed by dispersive liquid?liquid microextraction coupled with gas chromatography/mass spectrometry was applied for the quantitative analysis of phenazopyridine in urinary samples. Magnetic dispersive solid‐phase extraction was carried out using magnetic graphene oxide nanoparticles modified by poly(thiophene‐pyrrole) copolymer. The eluting solvent of this step was used as the disperser solvent for the dispersive liquid?liquid microextraction procedure. To reach the maximum efficiency of the method, effective parameters including sorbent amount, adsorption time, type and volume of disperser and extraction solvents, pH of the sample solution, and ionic strength as well as desorption time, and approach were optimized, separately. Characterization of the synthesized sorbent was studied by utilizing infrared spectroscopy, scanning electron microscopy, and energy‐dispersive X‐ray analysis. Calibration curve was linear in the range of 0.5?250 ng/mL (R2 = 0.9988) with limits of detection and quantification of 0.1 and 0.5 ng/mL, respectively. Intra‐ and interday precisions (RSD%, n = 3) of the method were in the range of 4.6?5.4% and 4.0?5.5%, respectively, at three different concentration levels. Under the optimal condition, this method was successfully applied for the determination of phenazopyridine in human urine samples. The relative recoveries were obtained in the range of 85.0?89.0%.  相似文献   

7.
We describe the preparation, characterization, and application of a composite film adsorbent based on blended agarose‐chitosan‐multiwalled carbon nanotubes for the preconcentration of selected nonsteroidal anti‐inflammatory drugs in aqueous samples before determination by high performance liquid chromatography with ultraviolet detection. The composite film showed a high surface area (4.0258 m2/g) and strong hydrogen bonding between the multiwalled carbon nanotubes and agarose/chitosan matrix, which prevent adsorbent deactivation and ensure long‐term stability. Several parameters, such as sample pH, addition of salt, extraction time, desorption solvent, and concentration of multiwalled carbon nanotubes in the composite film were optimized using a one‐factor‐at‐time approach. The optimum extraction conditions obtained were as follows: isopropanol as conditioning solvent, 10 mL of sample solution at pH 2, extraction time of 30 min, stirring speed of 600 rpm, 100 μL of isopropanol as desorption solvent, desorption time of 5 min under ultrasonication, and 0.4% w/v of composite film. Under the optimized conditions, the calibration curve showed good linearity in the range of 1–500 ng/mL (r2 = 0.997–0.999), and good limits of detection (0.89–8.05 ng/mL) were obtained with good relative standard deviations of < 4.59% (n = 3) for the determination of naproxen, diclofenac sodium salt, and mefenamic acid drugs.  相似文献   

8.
A new silver‐functionalized silica‐based material with a core–shell structure based on silver nanoparticle‐coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l‐ cysteine. l‐ Cysteine‐silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid‐phase extraction method based on l‐ cysteine‐silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l‐ cysteine‐silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85–102%) with relative standard deviations below 5.2% (= 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.  相似文献   

9.
A new, rapid, green, and cost‐effective magnetic solid‐phase extraction of ochratoxin A from red wine samples was developed using polydopamine‐coated magnetic multi‐walled carbon nanotubes as the absorbent. The polydopamine‐coated magnetic multi‐walled carbon nanotubes were fabricated with magnetic multi‐walled carbon nanotubes and dopamine by an in situ oxidative self‐polymerization approach. Transmission electron microscopy, dynamic light scattering, X‐ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high‐performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid‐phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8–104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1–2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine‐coated magnetic multi‐walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes.  相似文献   

10.
A simple, sensitive, and reliable procedure based on stir bar sorptive extraction coupled with high‐performance liquid chromatography was applied to simultaneously extract and determine three semipolar nitrosamines including N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine. To achieve the optimum conditions, the effective parameters on the extraction efficiency including desorption solvent and time, ionic strength of sample, extraction time, and sample volume were systematically investigated. The optimized extraction procedure was carried out by stir bars coated with polydimethylsiloxane. Under optimum extraction conditions, the performance of the proposed method was studied. The linear dynamic range was obtained in the range of 0.95–1000 ng/mL (r = 0.9995), 0.26–1000 ng/mL (r = 0.9988) and both 0.32–100 ng/mL (r = 0.9999) and 100–1000 ng/mL (r = 0.9998) with limits of detection of 0.28, 0.08, and 0.09 ng/mL for N‐nitrosodibutylamine, N‐nitrosodiphenylamine, and N‐nitrosodicyclohexylamine, respectively. The average recoveries were obtained >81%, and the reproducibility of the proposed method presented as intra‐ and interday precision were also found with a relative standard deviation <6%. Finally, the proposed method was successfully applied to the determination of trace amounts of selected nitrosamines in various water and wastewater samples and the obtained results were confirmed using mass spectrometry.  相似文献   

11.
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (= 3) and 1.1–5.5% (= 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples.  相似文献   

12.
The precise control of pesticide residues in foodstuffs depends significantly on the clean extraction of analytes using specifically designed separation methods. In this study, a one‐pot sol–gel process was used for the preparation of a magnetic hybrid silica gel tetraethylortho silicate‐cyanopropyltriethoxy silane nanocomposite. The prepared material was characterized using energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, single‐point specific surface area, and scanning electron microcopy. The synthesized magnetic hybrid material was used as a solid phase extraction sorbent for the extraction and preconcentration of some organophosphorus pesticides before gas chromatography with a microelectron capture detector. The performance of the proposed magnetic solid‐phase extraction technique was validated by linearity (0.05–2 ng/mL), correlation coefficients (r= 0.9993–0.9997), limit of detection (0.02–0.06 ng/mL, S/N = 3, = 3), and intraday (RSD = 1.5–8.7%, = 3) and interday precision (RSD = 5.5–9.3%, = 12), while the recovery in real samples and equilibrium adsorption capacity was 72.02–103.84% and 8–20 mg/g, respectively. The magnetic solid‐phase extraction based on the hybrid nanocomposite revealed a high enrichment factor, an appropriate dynamic range, and great absorptive ability toward the selected organophosphorus pesticides spiked in real water samples.  相似文献   

13.
With unique 3‐D architecture, the application of core‐based hyperbranched polyethyleneimine (CHPEI), as a capillary coating in capillary electrophoresis, is demonstrated by manipulation of the electroosmotic mobility (EOF). CHPEI coatings (CHPEI5, Mw ≈? 5000 and CHPEI25, Mw ≈? 25 000) were physically adsorbed onto the inner surface of bare fused‐silica capillary (BFS) via electrostatic interaction of the oppositely charged molecules by rinsing the capillaries with different CHPEI aqueous solutions. The EOF values of the coated capillaries were measured over the pH range of 4.0–9.0. At higher pH (pH >6) the coated capillary surface possesses excess negative charges, which causes the reversal of the EOF. The magnitudes of the EOF obtained from the coated capillaries were three‐fold lower than that of BFS capillary. Desirable reproducibility of the EOF with % RSD (n = 5) ? 2 was obtained. Effect of ionic strength, stability of the coating (% RSD = 0.3) and the dependence of the EOF on pH (% RSD = 0.5) were also investigated. The CHPEI‐coated capillaries were successfully utilized to separate phenolic compounds, B vitamins, as well as basic drugs and related compounds with reasonable analysis time (<20 min) and acceptable migration‐time repeatability (<0.7% RSD for intra‐capillary and <2% RSD for inter‐capillary).  相似文献   

14.
Solid‐phase microextraction (SPME) has been directly coupled to an ion‐trap mass spectrometer (MS) for the determination of the model compound lidocaine in urine, hereby applying MS/MS [fragmentation of [M + H]+ (m/z 235) to a fragment with m/z 86]. The throughput of samples has been increased using non‐equilibrium SPME with polydimethylsiloxane (PDMS) fibers. The effect of temperature on the sorption and the desorption was studied. Elevated temperatures during sorption (65°C) and desorption (55°C) had a considerable influence on the speed of the extraction. The desorption was carried out with a home‐made desorption chamber allowing thermostating. Only 1 min sorption and 1 min desorption were performed, after which MS detection took place, resulting in a total analysis time of 3 min. Detection limits below 1 ng/mL could be obtained despite yields of only 2.1 and 1.5% for a 100‐ and a 30‐μm PDMS‐coated fiber, respectively. Furthermore, the determination of lidocaine in urine had acceptable reproducibilities, i.e., relative standard deviations (RSDs) below 10%. A limit of quantitation (RSD < 15%) of about 1 ng/mL was obtained. No extra wash step of the extraction fiber was required after desorption if a 30‐μm coating was used, whereas not all the analyte was desorbed from the 100‐μm coating in a single desorption. Therefore, the SPME‐MS/MS system with a 30‐μm PDMS‐coated fiber for rapid non‐equilibrium SPME at elevated temperatures has interesting potential for high‐throughput analysis of biological samples.  相似文献   

15.
This study described an automated online method for the simultaneous determination of 8‐isoprostane, 8‐hydroxy‐2′‐deoxyguanosine, and 3‐nitro‐l ‐tyrosine in human urine. The method involves in‐tube solid‐phase microextraction using a Carboxen 1006 PLOT capillary column as an extraction device, followed by liquid chromatography with tandem mass spectrometry using a CX column and detection in the negative/positive switching ion‐mode by multiple reaction monitoring. Using their stable isotope‐labeled internal standards, each of these oxidative stress biomarkers showed good linearity from 0.02 to 2.0 ng/mL. Their detection limits (S/N = 3) were 3.4–21.5 pg/mL, and their intra‐ and inter‐day precisions (relative standard deviations) were >3.9 and 6.5% (= 5), respectively. This method was applied successfully to the analysis of urine samples, without any other pretreatment and interference peaks.  相似文献   

16.
Surfactant‐assisted electromembrane extraction coupled with cyclodextrin‐modified capillary electrophoresis was developed for the separation and determination of Tranylcypromine enantiomers in biological samples. This combination would provide a new strategy for selective and sensitive determination of target analytes. The addition of surfactant in the donor solution improved the analyte transport into the lumen of hollow fiber that resulted in an enhancement in the analytes migration into acceptor solution. Optimization of the variables, affecting proposed method, was carried out and best results were achieved with a 175 V potential as driving force of the electromembrane extraction, 2‐nitrophenyloctylether as the supported liquid membrane, donor solution containing 0.2 mM Triton X‐100 with pH 3 and 0.1 M HCl for acceptor solution. Then, the extract was analyzed using cyclodextrin‐modified capillary electrophoresis method for separation of Tranylcypromine enantiomers. The best results were obtained with a phosphate running buffer (100 mM, pH 2.0) containing 7% w/v hydroxypropyl‐α‐cyclodextrin. Under the optimum conditions, a low limit of detection (3.03 ng/mL), good linearity (R2 > 0.9953), and relative standard deviations below 4.0% (n = 5) were obtained. Finally, this procedure was applied to determine the concentration of Tranylcypromine enantiomers in urine samples with satisfactory results.  相似文献   

17.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

18.
A novel sol–gel coating on a stainless‐steel fiber was developed for the first time for the headspace solid‐phase microextraction and determination of α‐bisabolol with gas chromatography and flame ionization detection. The parameters influencing the efficiency of solid‐phase microextraction process, such as extraction time and temperature, pH, and ionic strength, were optimized by the experimental design method. Under optimized conditions, the linear range was between 0.0027 and 100 μg/mL. The relative standard deviations determined at 0.01 and 1.0 μg/mL concentration levels (= 3), respectively, were as follows: intraday relative standard deviations 3.4 and 3.3%; interday relative standard deviations 5.0 and 4.3%; and fiber‐to‐fiber relative standard deviations 6.0 and 3.5%. The relative recovery values were 90.3 and 101.4% at 0.01 and 1.0 μg/mL spiking levels, respectively. The proposed method was successfully applied to various real samples containing α‐bisabolol.  相似文献   

19.
In this study, a new covalent organic framework, consisting of tetra(4‐aminophenyl)porphyrin and tris(4‐formyl phenyl)amine, was layer‐by‐layer immobilized on stainless‐steel wire as a coating for microextraction. The fabrication process was easy and controllable under mild conditions. The as‐grown fiber was applied to extract polycyclic aromatic hydrocarbons in aqueous solution via head‐space solid‐phase microextraction. Furthermore, it was analyzed by gas chromatography with a flame ionization detector. A wide linear range (0.1–50 µg/L), low limits of detection (0.006–0.024 µg/L, signal‐to‐noise ratio = 3), good repeatability (intra‐fiber, n = 6, 3.1–8.50%), and reproducibility (fiber to fiber; n = 3, 5.79–9.98%), expressed as relative standard deviations, demonstrate the applicability of the newly developed coating. This new material was successfully utilized in real sample extraction with a satisfactory result. Potential parameters affecting the extraction efficiency, including extraction temperature and extraction time, salt concentration, agitation speed, sample volume, desorption temperature, and time, were also optimized and discussed.  相似文献   

20.
In this study, firstly, a double‐reservoir and switchable prototype of a micro‐chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro‐spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X‐ray analysis confirmed the presence of titania, while the recorded Fourier transform infrared spectra proved the chemical structures of the polymeric mats. The incorporation of titania as well as polypyrrole in the composition of polyamide nanofibers improved both mechanical stability and extraction capacity of the extractive phase and therefore facilitated the extraction/desorption process. The limits of detection and quantification were 0.01 and 0.04 ng/mL, respectively. In addition, the interday and intraday precisions were lower than 6.7% (n = 3). The linearity was in the range of 0.14–75.00 ng/mL, while recoveries were between 94.1 and 98.4% with the regression coefficient of 0.9987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号