首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive HPLC method with fluorescence detection was developed for the determination of bisphenol A (BPA) and bisphenol B (BPB) in human blood serum. The detection limits of the method were 0.18 and 0.20 ng/mL for BPA and BPB, respectively. A single‐step liquid–liquid extraction was used for the pre‐treatment of serum samples. The recoveries of BPA and BPB spiked to sera were 85.6 and 87.7%, respectively. The analyses of sera from both healthy and endometriotic women emphasized the absence of bisphenols in all the control cases (11 women), whereas BPA was found in 30 sera (51.7%) and BPB was found in 16 sera (27.6%) in the group of 58 patients with endometriosis; in nine of such sera BPA and BPB were present simultaneously. Only relatively to the sera quantitated, BPA concentrations ranged from 0.79 to 7.12 ng/mL (mean concentration 2.91 ± 1.74 ng/mL), whereas BPB concentrations ranged from 0.88 to 11.94 ng/mL (mean concentration 5.15 ± 4.16 ng/mL). Therefore, the presence of at least one of the two bisphenols was verified in a percentage as high as 63.8% in the sera from endometriotic women, suggesting the existence of a relationship between endometriosis and BPA and/or BPB exposure. Indeed, it is well known that bisphenols can work as xenoestrogens, owing to their structural similarity to natural and synthetic estrogens (e.g. estradiol and dietilstilbestrol). However, further studies are necessary to confirm this hypothesis and to assess the actual dose at which exposures to bisphenols are able to increase the sensitivity of the endometriotic cells to estradiol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The dummy molecularly imprinted polymers were prepared by Pickering emulsion polymerization. 4,4′‐(1‐Phenylethylidene) bisphenol was selected as the dummy template to avoid the leakage of the target bisphenols. The microsphere particles were characterized by scanning electron microscopy and nitrogen adsorption–desorption measurements, demonstrating that the regular‐shaped and medium‐sized particles (40–70 μm) were obtained with a specific surface area of 355.759 m2/g and a total pore volume of 0.561 cm3/g. The molecular imprinting properties of the particles were evaluated by static adsorption and chromatographic evaluation experiments. The association constant and maximum adsorption amount of bisphenol A were 0.115 mmol/L and 3.327 μmol/g using Scatchard analysis. The microsphere particles were then used as a solid‐phase extraction sorbent for selective extraction of seven bisphenols. The method of dummy molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography and diode array detection was successfully established for the extraction and determination of seven bisphenols from environmental sediment samples with method detection limits of 0.6–1.1 ng/g. Good recoveries (75.5–105.2%) for sediment samples at two spiking levels (500 and 250 ng/g) and reproducibility (RSDs < 7.7%, n = 3) were obtained.  相似文献   

3.
A simple and sensitive analytical methodology is developed for rapid screening and quantification of selected estrogenic endocrine disrupting chemicals and bisphenol A from intact milk using fabric phase sorptive extraction in combination with high‐performance liquid chromatography coupled to ultraviolet detection/tandem mass spectrometry. The new approach eliminates protein precipitation and defatting step from the sample preparation workflow. In addition, the error prone and time‐consuming solvent evaporation and sample reconstitution step used as the sample post‐treatment has been eliminated. Parameters with most significant impact on the extraction efficiency of fabric phase sorptive extraction including sorbent chemistry, sample volume, extraction time have been thoroughly studied and optimized. Separation of the selected estrogenic endocrine disrupting chemicals including α‐estradiol, hexestrol, estrone, 17α‐ethinyl estradiol, diethylstilboestrol, and bisphenol A were achieved using a Zorbax Extend‐C18 high‐performance liquid chromatography column (15 cm × 4.6 mm, 5 μm particle size). The limit of detection values obtained in fabric phase sorptive extraction with high‐performance liquid chromatography with ultraviolet detection ranged from 25.0 to 50.0 ng/mL. The method repeatability values were 3.6–13.9 (relative standard deviation, %) and intermediate precision values were 4.6–12.7 (relative standard deviation, %). The fabric phase sorptive extraction method was also coupled to liquid chromatography with tandem mass spectrometry for identifying each endocrine disrupting chemical at 10 ng/mL.  相似文献   

4.
Microwave‐ and ultrasound‐assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach followed by high‐performance liquid chromatography with tandem mass spectrometry were developed for the simultaneous determination of eight bisphenol analogues in serum and sediment. The developed methods provided satisfactory extraction efficiency for the energy provided by microwaves and ultrasound. Compositions of commercial sorbents (primary secondary amine, MgSO4, octadecyl‐modified silica, and graphitized carbon black) were evaluated. The ultrasound‐assisted method was suited for serum using primary secondary amine, MgSO4, and octadecyl‐modified silica as sorbents and a mixture of hexane and ethyl acetate as extraction solvent. The microwave‐assisted method worked better for sediment with tetrahydrofuran and methanol as solvents and primary secondary amine, MgSO4, octadecyl‐modified silica, and graphitized carbon black as sorbents. Other experimental parameters, such as extraction temperature and time, were also optimized. The inter‐ and intraday relative standard deviations ranged from 2.7 to 5.5%. The limits of detection were between 0.1 and 1.0 ng/mL for serum and between 0.1 and 0.5 ng/g dry weight for sediment. The proposed methods were successfully applied to seven sediment and 20 human serum samples. The results showed that the developed methods were practical for the analysis and biomonitoring of bisphenols in sera and sediment.  相似文献   

5.
A novel approach is presented to determine four bisphenols in water and urine samples, employing magnetic dispersive solid‐phase extraction combined with liquid chromatography and diode array detection. A modified zeolite‐based magnetic composite was used as an efficient sorbent, combining the advantages of magnetic materials with the remarkable properties of zeolites. A multivariate optimization design was employed to optimize some experimental factors affecting magnetic dispersive solid‐phase extraction. The method was evaluated under optimized conditions (i.e., amount of sorbent, 50 mg; sample pH, unadjusted; NaCl concentration, 1.25%; extraction and elution time, 2 min; eluent solvent, ethanol; eluent solvent volume, 400 µL), obtaining good linearity with correlation coefficients ranging between 0.995 and 0.999 (N = 5) (from 2 to 250 µg/L for bisphenol A, bisphenol AP, and bisphenol P and from 5 to 250 µg/L for bisphenol AF). Method repeatability was assessed obtaining coefficients of variation between 3 and 11% (n = 6). Finally, the method was applied to spiked real samples, obtaining for water samples relative recoveries between 83 and 105%, and for urine samples between 81 and 108% for bisphenol A, bisphenol AP, and bisphenol AF, and between 47 and 59% for bisphenol P.  相似文献   

6.
A new silver‐functionalized silica‐based material with a core–shell structure based on silver nanoparticle‐coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l‐ cysteine. l‐ Cysteine‐silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid‐phase extraction method based on l‐ cysteine‐silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l‐ cysteine‐silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R2 > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85–102%) with relative standard deviations below 5.2% (= 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples.  相似文献   

7.
A high-performance liquid chromatography-ultraviolet method was developed for rapidly and simultaneously analyzing novel and typical bisphenols in building materials, including bisphenol S, diphenolic acid, bisphenol F, bisphenol E, bisphenol A, bisphenol B, bisphenol AF, bisphenol AP, bisphenol C, bisphenol FL, bisphenol Z, bisphenol BP, bisphenol M, and bisphenol P. By using a Kromasil 100–5 C18 column, these bisphenols were completely separated in 40 min via gradually increasing the concentration of methanol in the mobile phase from 45 to 80% during the elution process. In particular, this method achieved the synchronous analysis of bisphenol S, diphenolic acid, bisphenol FL, bisphenol BP, and bisphenol M through HPLC, which were difficult to separate and had to be identified and detected through mass spectrometry. The limits of detection of the method ranged from 0.002 to 0.040 mg/L for these 14 bisphenols, with a precision of less than 4.9% (n = 7, c = 0.05 mg/L). The analytical results for five types of building materials (phenolic, epoxy, polycarbonate, polyester, and polysulfone resins) indicated that the proposed method is appropriated for the rapid measurement of bisphenols in real samples.  相似文献   

8.
A novel analytical method for the simultaneous determination of the concentration of sildenafil and its five analogues in dietary supplements using solid‐phase extraction assisted reversed‐phase dispersive liquid–liquid microextraction based on solidification of floating organic droplet combined with ion‐pairing liquid chromatography with an ultraviolet detector was developed. Parameters that affect extraction efficiency were systematically investigated, including the type of solid‐phase extraction cartridge, pH of the extraction environment, and the type and volume of extraction and dispersive solvent. The method linearity was in the range of 5.0–100 ng/mL for sildenafil, homosildenafil, udenafil, benzylsildenafil, and thiosildenafil and 10–100 ng/mL for acetildenafil. The coefficients of determination were ≥0.996 for all regression curves. The sensitivity values expressed as limit of detection were between 2.5 and 7.5 ng/mL. Furthermore, intraday and interday precisions expressed as relative standard deviations were less than 5.7 and 9.9%, respectively. The proposed method was successfully applied to the analysis of sildenafil and its five analogues in complex dietary supplements.  相似文献   

9.
A new version of dispersive liquid–liquid microextraction, namely, cyclodextrin‐assisted dispersive liquid–liquid microextraction, with subsequent sweeping micellar electrokinetic chromatography has been developed for the preconcentration and sensitive detection of carbamazepine and clobazam. α‐Cyclodextrin and chloroform were used as the dispersive agent and extraction solvent, respectively. After the extraction, carbamazepine and clobazam were analyzed using micellar electrokinetic chromatography with ultraviolet detection. The detection sensitivity was further enhanced using the sweeping technique. Under optimal extraction and stacking conditions, the calibration curves of carbamazepine and clobazam were linear over a concentration range of 2.0–200.0 ng/mL. The method detection limits at a signal‐to‐noise ratio of 3 were 0.6 and 0.5 ng/mL with sensitivity enhancement factors of 3575 and 4675 for carbamazepine and clobazam, respectively. This developed method demonstrated high sensitivity enhancement factors and was successfully applied to the determination of carbamazepine and clobazam in human urine samples. The precision and accuracy for urine samples were less than 4.2 and 6.9%, respectively.  相似文献   

10.
A microwave‐assisted extraction (MAE) protocol and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of bisphenol F diglycidyl ether (Novolac glycidyl ether 2‐Ring), Novolac glycidyl ether 3‐Ring, Novolac glycidyl ether 4‐Ring, Novolac glycidyl ether 5‐Ring, Novolac glycidyl ether 6‐Ring, bisphenol A diglycidyl ether, bisphenol A (2,3‐dihydroxypropyl) glycidyl ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) glycidyl ether, bisphenol A bis(3‐chloro‐2‐hydroxypropyl) ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) (2,3‐dihydroxypropyl) ether in canned fish and meat. After being optimized in terms of solvents, microwave power and irradiation time, MAE was selected to carry out the extraction of ten target compounds. Analytes were purified by poly(styrene‐co‐divinylbenzene) SPE columns and determinated by HPLC‐fluorescence detection. LOD varied from 0.79 to 3.77 ng/g for different target compounds based on S/N=3; LOQ were from 2.75 to 10.92 ng/g; the RSD for repeatability were <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. This proposed method was successfully applied to 16 canned fish and meat, and the results acquired were in good accordance with the studies reported. Compared with the conventional liquid–liquid extraction and ultrasonic extraction, the optimized MAE approach gained the higher extraction efficiency (20–50% improved).  相似文献   

11.
韩疏影  宋易霖  康安  邓海山  朱栋  池玉梅 《色谱》2019,37(11):1185-1192
基于在线富集-高效液相色谱-荧光法检测法,以C18柱分别作为富集柱和分析柱,经优化荧光波长、色谱分离和富集条件,建立了同时快速检测塑料儿童水杯浸出液中9种双酚类物质的方法。方法学考察结果显示,所建方法符合含量测定要求。9种双酚类物质在各自范围内线性关系良好,相关系数(r2)均大于0.998,检出限为0.13~66.7 ng/L。9种双酚类物质的回收率为90.7%~112.4%(RSD<11.3%,n=6)。结果显示,除双酚芴外,其他双酚类物质均有检出,浸出量随盛放时间增加而增大,高温多次浸泡后部分双酚类浸出量降低。该方法灵敏度高,操作简便,环境友好,可实现多种新型双酚类物质的同时快速检测。  相似文献   

12.
Determination of methamphetamine is of great importance in clinical and forensic laboratories because there are low dosages of drugs in the biological media and social problems created due to the methamphetamine consumption. Polymeric carbon based‐nano composites are reasonable candidates for dispersive solid phase extraction method due to facial and affordable synthesis process and high selectivity and sensitivity. Nano graphene oxide polypyrolle composite was synthesized and employed as dispersive solid‐phase extraction adsorbent for methamphetamine extraction from complex urine matrix. Full characterization of the prepared nano graphene oxide polypyrolle composite was completed and the influential extraction parameters were investigated through one‐parameter‐at‐a‐time method. High‐performance liquid chromatography detectors were applied as detection and quantification instrument. The optimized extraction parameters included 300 µL of methanol, 10 min of extraction and desorption time, 6000 stirring rate, urine pH value of 10, 60 mg of adsorbent, and 6 mL of urine volume. After outlining the calibration curve, the linear range of the method was considered as 30–800 ng/mL. The detection limit for the suggested method was 9 ng/mL. The analysis of addicted subjects with the proposed method confirmed the utility of the method in different analytical and clinical laboratories.  相似文献   

13.
Saxitoxin, which is one of the most typical paralytic shellfish poisoning toxins, ranks the highest intoxication rate of marine biological poisoning cases globally. Efficient clean‐up and extraction of saxitoxin from complex biological matrices are imperative for the analysis and concentration monitoring of the toxin when correlative poisoning cases happen. Herein, l ‐cysteine‐modified magnetic microspheres based on metal‐organic coordination were synthesized by a facile approach and applied for magnetic solid‐phase extraction of saxitoxin from rat plasma samples before liquid chromatography–tandem mass spectrometry detection. Parameters, including adsorbent amount, extraction time, desorption solution, and desorption time that could affect the extraction efficiency, were respectively investigated. The developed method demonstrated good linearity in the range of 5–300 ng/mL (R= 0.9985) with a limit of quantification of 5 ng/mL and a limit of detection of 0.5 ng/mL, acceptable accuracy. and precision of within‐run and between‐run.  相似文献   

14.
A new method based on cetylpyridinium chloride coated ferroferric oxide/silica magnetic microspheres as an efficient solid‐phase adsorbent was developed for the extraction and enrichment of ochratoxin A. The determination of ochratoxin A was obtained by high‐performance liquid chromatography with fluorescence detection. In the presence of cetylpyridinium chloride, the adsorption capacity of ferroferric oxide/silica microspheres was 5.95 mg/g for ochratoxin A. The experimental parameters were optimized, including the amounts of ferroferric oxide/silica microspheres (20 mg) and cetylpyridinium chloride (0.18 mL, 0.5 mg/mL), pH value of media (9), ultrasonic time (5 min), elution solvent and volume [2(1 + 1) mL (washed twice, 1 mL each time) 1% acetic acid acetonitrile]. Under optimal experiment conditions, ochratoxin A had good linearity in the range of 2.5–250.0 ng/L in water samples with correlation coefficient of the calibration curve 0.9995. The limit of detection for ochratoxin A was 0.83 ng/L, and the recoveries were 89.8–96.8% with the relative standard deviation of 1.5–3.5% in environmental water samples. Furthermore, ferroferric oxide/silica microspheres show excellent reusability during extraction procedures for no less than six times.  相似文献   

15.
A three‐dimensional graphene was synthesized through a hydrothermal reaction of graphene oxide with phytic acid. The microstructure and morphology of the phytic acid induced three‐dimensional graphene were investigated by nitrogen adsorption–desorption isotherms, scanning electron microscopy, and transmission electron microscopy. With a large surface area and three‐dimensional structure, the graphene was used as the solid‐phase extraction adsorbent for the extraction of phthalate esters from bottled water and sports beverage samples before high‐performance liquid chromatographic analysis. The results indicated that the graphene was efficient for the solid‐phase extraction of phthalate esters. The limits of detection (S/N = 3) of the method for the analytes were 0.02–0.03 ng/mL for the water samples and 0.03–0.15 ng/mL for the sports beverage sample. The limits of quantitation (S/N = 9) for the analytes were 0.06–0.09 ng/mL for water samples and 0.09–0.45 ng/mL for sports beverage sample. The calibration curves for the phthalate esters by the method had a good linearity from 0.1 to 80.0 ng/mL with correlation coefficients larger than 0.9997. The recoveries of the analytes for the method fell in the range of 86.7–116.2% with the relative standard deviations between 1.5 and 6.8%.  相似文献   

16.
A new, rapid, green, and cost‐effective magnetic solid‐phase extraction of ochratoxin A from red wine samples was developed using polydopamine‐coated magnetic multi‐walled carbon nanotubes as the absorbent. The polydopamine‐coated magnetic multi‐walled carbon nanotubes were fabricated with magnetic multi‐walled carbon nanotubes and dopamine by an in situ oxidative self‐polymerization approach. Transmission electron microscopy, dynamic light scattering, X‐ray photoelectron spectroscopy and vibrating sample magnetometry were used to characterize the absorbents. Ochratoxin A was quantified with high‐performance liquid chromatography coupled with fluorescence detection, with excitation and emission wavelengths of 338 and 455 nm, respectively. The conditions affecting the magnetic solid‐phase extraction procedure, such as pH, extraction solution, extraction time, absorbent amount, desorption solution and desorption time were investigated to obtain the optimal extraction conditions. Under the optimized conditions, the extraction recovery was 91.8–104.5% for ochratoxin A. A linear calibration curve was obtained in the range of 0.1–2.0 ng/mL. The limit of detection was 0.07 ng/mL, and the limit of quantitation was 0.21 ng/mL. The recoveries of ochratoxin A for spiked red wine sample ranged from 95.65 to 100.65% with relative standard deviation less than 8%. The polydopamine‐coated magnetic multi‐walled carbon nanotubes showed a high affinity toward ochratoxin A, allowing selective extraction and quantification of ochratoxin A from complex sample matrixes.  相似文献   

17.
A simple, fast, and sensitive analytical protocol using fabric‐phase sorptive extraction followed by high performance liquid chromatography with ultraviolet detection has been developed and validated for the extraction of five parabens including methylparaben, ethylparaben, propylparaben, butylparaben, and benzylparaben. In the present work, sol‐gel polyethylene glycol coated fabric‐phase sorptive extraction membrane is used for the preconcentration of parabens (polar) from complex matrices. The use of fabric‐phase sorptive extraction membrane provides a high surface area which offers high sorbent loading, shortened equilibrium time, and overall decrease in the sample preparation time. Various factors affecting the performance of fabric‐phase sorptive extraction, including extraction time, eluting solvent, elution time, and pH of the sample matrix, were optimized. Separation was performed using a mobile phase consisting of water:acetonitrile (63:37; v/v) at an isocratic elution mode at a flow rate of 0.9 mL/min with wavelength at 254 nm. The calibration curves of the target analytes were prepared with good correlation coefficient values (r2 > 0.9955). The limit of detection values range from 0.252 to 0.580 ng/mL. Finally, the method was successfully applied to various cosmetics and personal care product samples such as rose water, deodorant, hair serum, and cream with extraction recoveries ranged between 88 and 122% with relative standard deviation <5%.  相似文献   

18.
A novel mixed hemimicelles and magnetic dispersive solid‐phase extraction method based on long‐chain ionic liquids for the extraction of five fluorescent whitening agents was established. The factors influenced on extraction efficiency were investigated. Under the optimal conditions, namely, the pH of sample solution at 8.0, the concentration of long chain ionic liquid at 0.5 mmol/L, the amount of Fe3O4 nanoparticle at 12 mg, extraction time at 10 min, pH 6.0 of methanol as eluent, and the desorption time at 1 min, satisfactory results were obtained. Wide linear ranges (0.02–10 ng/mL) and good linearity were attained (0.9997–0.9999). The intraday and interday RSDs were 2.1–8.3%. Limits of detection were 0.004–0.01 ng/mL, which were decreased by almost an order of magnitude compared to direct detection without extraction. The present method was applied to extract the fluorescent whitening agents in two kinds of paper samples, obtaining satisfactory results. All showed results illustrated that the detection sensitivity was improved and the proposed method was a good choice for the enriching and monitoring of trace fluorescent whitening agents.  相似文献   

19.
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1‐Octyl‐3‐methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10–1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal‐to‐noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220‐fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser.  相似文献   

20.
A new approach applying a pet fish air pump is introduced to develop an extraction method, namely, air‐pump‐enhanced emulsion, followed by salt‐assisted emulsion breaking based on solidified floating organic drop microextraction for the extraction and preconcentration of Sudan I–IV before high‐performance liquid chromatography. The applicability of this method was successfully demonstrated by determination of these dyes in four chili products that include chili powder, chili oil, chili sauce, and chili paste. An enrichment factor of 62 was obtained only with a sample solution of 5 mL. A linear range of 0.5–2500 ng/mL was obtained with a limit of detection of 0.16–0.24 ng/mL and recovery of 90–110%. This method is superior to other liquid–liquid extraction methods, as is simple, rapid, environmental friendly, and its phase separation needs no centrifugation. It also needs no disperser solvent and requires less organic solvent, and satisfies the criteria to be called as a green extraction. Therefore, this facile extraction method can be successfully applied in the determination of Sudan dyes in food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号