首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we studied the stabilization of nonlinear regularized Prabhakar fractional dynamical systems without and with time delay. We establish a Lyapunov stabiliy theorem for these systems and study the asymptotic stability of these systems without design a positive definite function V (without considering the fractional derivative of function V is negative). We design a linear feedback controller to control and stabilize the nonautonomous and autonomous chaotic regularized Prabhakar fractional dynamical systems without and with time delay. By means of the Lyapunov stability, we obtain the control parameters for these type of systems. We further present a numerical method to solve and analyze regularized Prabhakar fractional systems. Furthermore, by employing numerical simulation, we reveal chaotic attractors and asymptotic stability behaviors for four systems to illustrate the presented theorem.  相似文献   

2.
3.
This article investigates the chaos control problem for the fractional‐order chaotic systems containing unknown structure and input nonlinearities. Two types of nonlinearity in the control input are considered. In the first case, a general continuous nonlinearity input is supposed in the controller, and in the second case, the unknown dead‐zone input is included. In each case, a proper switching adaptive controller is introduced to stabilize the fractional‐order chaotic system in the presence of unknown parameters and uncertainties. The control methods are designed based on the boundedness property of the chaotic system's states, where, in the proposed methods the nonlinear/linear dynamic terms of the fractional‐order chaotic systems are assumed to be fully unknown. The analytical results of the mentioned techniques are proved by the stability analysis theorem of fractional‐order systems and the adaptive control method. In addition, as an application of the proposed methods, single input adaptive controllers are adopted for control of a class of three‐dimensional nonlinear fractional‐order chaotic systems. And finally, some numerical examples illustrate the correctness of the analytical results. © 2014 Wiley Periodicals, Inc. Complexity 21: 211–223, 2015  相似文献   

4.
One new theorem for Caputo fractional derivative and two new theorems for Caputo fractional order systems, when 1 a 2, are proposed in this paper. The results have proved to be useful in order to apply the fractional-order extension of Lyapunov direct method, to demonstrate the instability and the stability of many fractional order systems,which can be nonlinear and time varying.  相似文献   

5.
In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora–Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.  相似文献   

6.
This paper proposes a novel fractional-order sliding mode approach for stabilization and synchronization of a class of fractional-order chaotic systems. Based on the fractional calculus a stable integral type fractional-order sliding surface is introduced. Using the fractional Lyapunov stability theorem, a single sliding mode control law is proposed to ensure the existence of the sliding motion in finite time. The proposed control scheme is applied to stabilize/synchronize a class of fractional-order chaotic systems in the presence of model uncertainties and external disturbances. Some numerical simulations are performed to confirm the theoretical results of the paper. It is worth noticing that the proposed fractional-order sliding mode controller can be applied to control a broad range of fractional-order dynamical systems.  相似文献   

7.
This paper is concerned with a nonlinear fractional boundary value problem on a star graph. By using a transformation, the suggested problem is converted into an equivalent system of fractional boundary value problem. Schaefer's fixed point theorem and Banach's contraction principle is used to establish its existence and uniqueness results. Further, different kinds of Ulam's type stability results for the proposed problem have been discussed. Finally, two examples are presented to illustrate the application of the obtained results.  相似文献   

8.
In this paper, we prove necessary conditions for existence and uniqueness of solution (EUS) as well Hyers-Ulam stability for a class of hybrid fractional differential equations (HFDEs) with $p$-Laplacian operator. For these aims, we take help from topological degree theory and Leray Schauder-type fixed point theorem. An example is provided to illustrate the results.  相似文献   

9.
10.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we show that a fractional adaptive controller based on high gain output feedback can always be found to stabilize any given linear, time-invariant, minimum phase, siso systems of relative degree one. We generalize the stability theorem of integer order controllers to the fractional order case, and we introduce a new tuning parameter for the performance behaviour of the controlled plant. A simulation example is given to illustrate the effectiveness of the proposed algorithm.  相似文献   

12.
In this article, a high‐order finite difference scheme for a kind of nonlinear fractional Klein–Gordon equation is derived. The time fractional derivative is described in the Caputo sense. The solvability of the difference system is discussed by the Leray–Schauder fixed point theorem, while the stability and L convergence of the finite difference scheme are proved by the energy method. Numerical examples are provided to demonstrate the theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 706–722, 2015  相似文献   

13.
In this paper, we investigate existence and generalized Hyers–Ulam–Rassias stability of Stieltjes quadratic functional integral equations. Firstly, we show some basic properties of the composite function of bounded variation. Secondly, we derive the generalized Hyers–Ulam–Rassias stability result after examining the existence and uniqueness results via the theory of measure of noncompactness and a fixed point theorem of Darbo type. Finally, two examples of functional integral equations of fractional order are given to demonstrate the applicability of our results.  相似文献   

14.
In this paper, some new concepts in stability of fractional differential equations are offered from different perspectives. Hyers–Ulam–Rassias stability as well as Hyers–Ulam stability of a certain fractional differential equation are presented. The techniques rely on a fixed point theorem in a generalized complete metric space. Some applications of our results are also provided.  相似文献   

15.
In this paper, using the Riemann‐Liouville fractional integral with respect to another function and the ψ?Hilfer fractional derivative, we propose a fractional Volterra integral equation and the fractional Volterra integro‐differential equation. In this sense, for this new fractional Volterra integro‐differential equation, we study the Ulam‐Hyers stability and, also, the fractional Volterra integral equation in the Banach space, by means of the Banach fixed‐point theorem. As an application, we present the Ulam‐Hyers stability using the α‐resolvent operator in the Sobolev space .  相似文献   

16.
The notion of a distributed-order Hilfer–Prabhakar derivative is introduced, which reduces in special cases to the existing notions of fractional or distributed-order derivatives. The stability of two classes of distributed-order Hilfer–Prabhakar differential equations, which are generalizations of all distributed or fractional differential equations considered previously, is analyzed. Sufficient conditions for the asymptotic stability of these systems are obtained by using properties of generalized Mittag-Leffler functions, the final-value theorem, and the Laplace transform. Stability conditions for such systems are introduced by using a new definition of the inertia of a matrix with respect to the distributed-order Hilfer–Prabhakar derivative.  相似文献   

17.
In this paper, we develop a practical numerical method to approximate a fractional diffusion equation with Dirichlet and fractional boundary conditions. An approach based on the classical Crank–Nicolson method combined with spatial extrapolation is used to obtain temporally and spatially second‐order accurate numerical estimates. The solvability, stability, and convergence of the proposed numerical scheme are proved via the Gershgorin theorem. Numerical experiments are performed to confirm the accuracy and efficiency of our scheme.  相似文献   

18.
This paper addressed the controllability of nonlinear fractional order integrodifferential systems with input delay. Firstly, the Caputo fractional derivatives and the Mittag‐Leffler functions are employed. Thereafter, we establish a set of sufficient and necessary conditions for the controllability of the linear fractional system. Furtherly, controllability conditions of the nonlinear integrodifferential fractional order system with input delay are acquired by utilizing Arzela‐Ascoli theorem and Schauder's fixed‐point theorem. Finally, an example is presented to demonstrate our main results.  相似文献   

19.
In this article, we study the existence and uniqueness of solution for a coupled system of nonlinear implicit fractional anti‐periodic boundary value problem. Further, we investigate different kinds of stability such as Ulam‐Hyers stability, generalized Ulam‐Hyers stability, Ulam‐Hyers‐Rassias stability, and generalized Ulam‐Hyers‐Rassias stability. We develop conditions for existence and uniqueness by using the classical fixed point theorem. Also, two examples are provided to illustrate the obtained results.  相似文献   

20.
In this paper we study the controllability of fractional integrodifferential systems in Banach spaces. The results are obtained by using fractional calculus, semigroup theory and the fixed point theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号