首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The ionic conductivity and small size of the hydrogen ion make it an ideal charge carrier for hydrogen‐ion energy storage (HES); however, high‐voltage two‐electrode configurations are difficult to construct as the result of the lack of efficient cathodic energy storage. Herein, the high potential fast anionic redox at the cathode of reduced graphene oxide (rGO) was applied by introducing redox additive electrolytes. By coupling the storing hydrogen ion in the Ti3C2Tx at the anode, a HES with a voltage of 1.8 V and a plateau voltage at 1.2 V was constructed. Compared with 2.2 Wh kg?1 for the low‐voltage Ti3C2Tx//Ti3C2Tx, the specific energy of asymmetric rGO//Ti3C2Tx reaches 34.4 Wh kg?1. Furthermore, it possesses an energy density of 23.7 Wh kg?1 at high power density of 22.5 kW kg?1. Thus, this study provides a novel guideline for constructing high‐voltage fast HES full cells.  相似文献   

2.
Porous V2O5 nanotubes, hierarchical V2O5 nanofibers, and single‐crystalline V2O5 nanobelts were controllably synthesized by using a simple electrospinning technique and subsequent annealing. The mechanism for the formation of these controllable structures was investigated. When tested as the cathode materials in lithium‐ion batteries (LIBs), the as‐formed V2O5 nanostructures exhibited a highly reversible capacity, excellent cycling performance, and good rate capacity. In particular, the porous V2O5 nanotubes provided short distances for Li+‐ion diffusion and large electrode–electrolyte contact areas for high Li+‐ion flux across the interface; Moreover, these nanotubes delivered a high power density of 40.2 kW kg?1 whilst the energy density remained as high as 201 W h kg?1, which, as one of the highest values measured on V2O5‐based cathode materials, could bridge the performance gap between batteries and supercapacitors. Moreover, to the best of our knowledge, this is the first preparation of single‐crystalline V2O5 nanobelts by using electrospinning techniques. Interestingly, the beneficial crystal orientation provided improved cycling stability for lithium intercalation. These results demonstrate that further improvement or optimization of electrochemical performance in transition‐metal‐oxide‐based electrode materials could be realized by the design of 1D nanostructures with unique morphologies.  相似文献   

3.
High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm?2), and lean electrolytes (6.1 g Ah?1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg?1 for 60 cycles with lean electrolytes (2.3 g Ah?1).  相似文献   

4.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

5.
The ion conductors Li4+xAlxSi1‐xO4‐yLi3PO4 (x = 0 to 0.5, y = 0 to 0.6) were prepared by the Sol‐Gel method. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The conductivity and sinterability increased when y increased from 0 to 0.4 in the Li4+xAlxSi1‐xO4‐yLi3PO4. The particle size of the powder samples is about 0.13 μm. The maximum conductivity at 20 °C is 3.128 × 10?5s cm?1 for Li4.4Al0.4Si0.6O4‐0.4 Li3PO4.  相似文献   

6.
A simple, efficient and eco‐friendly procedure has been developed using Cu(II) immobilized on guanidinated epibromohydrin‐functionalized γ‐Fe2O3@TiO2 (γ‐Fe2O3@TiO2‐EG‐Cu(II)) for the synthesis of 2,4,5‐trisubstituted and 1,2,4,5‐tetrasubstituted imidazoles, via the condensation reactions of various aldehydes with benzil and ammonium acetate or ammonium acetate and amines, under solvent‐free conditions. High‐resolution transmission electron microscopy analysis of this catalyst clearly affirmed the formation of a γ‐Fe2O3 core and a TiO2 shell, with mean sizes of about 10–20 and 5–10 nm, respectively. These data were in very good agreement with X‐ray crystallographic measurements (13 and 7 nm). Moreover, magnetization measurements revealed that both γ‐Fe2O3@TiO2 and γ‐Fe2O3@TiO2‐EG‐Cu(II) had superparamagnetic behaviour with saturation magnetization of 23.79 and 22.12 emu g?1, respectively. γ‐Fe2O3@TiO2‐EG‐Cu(II) was found to be a green and highly efficient nanocatalyst, which could be easily handled, recovered and reused several times without significant loss of its activity. The scope of the presented methodology is quite broad; a variety of aldehydes as well as amines have been shown to be viable substrates. A mechanism for the cyclocondensation reaction has also been proposed.  相似文献   

7.
Titanium‐oxide‐based materials are considered attractive and safe alternatives to carbonaceous anodes in Li‐ion batteries. In particular, the ramsdellite form TiO2(R) is known for its superior lithium‐storage ability as the bulk material when compared with other titanates. In this work, we prepared V‐doped lithium titanate ramsdellites with the formula Li0.5Ti1?xVxO2 (0≤x≤0.5) by a conventional solid‐state reaction. The lithium‐free Ti1?xVxO2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion‐extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5Ti1?xVxO2 compounds and to follow the lithium extraction by difference‐Fourier maps. Previously delithiated Ti1?xVxO2 ramsdellites are able to insert up to 0.8 Li+ per transition‐metal atom. The initial gravimetric capacities of 270 mAh g?1 with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2‐related intercalation compounds for the threshold of one e? per formula unit.  相似文献   

8.
《化学:亚洲杂志》2017,12(16):2127-2133
In this work, β‐Co(OH)2 nanosheets are explored as efficient pseudocapacitive materials for the fabrication of 1.6 V class high‐energy supercapacitors in asymmetric fashion. The as‐synthesized β‐Co(OH)2 nanosheets displayed an excellent electrochemical performance owing to their unique structure, morphology, and reversible reaction kinetics (fast faradic reaction) in both the three‐electrode and asymmetric configuration (with activated carbon, AC). For example, in the three‐electrode set‐up, β‐Co(OH)2 exhibits a high specific capacitance of ∼675 F g−1 at a scan rate of 1 mV s−1. In the asymmetric supercapacitor, the β‐Co(OH)2∥AC cell delivers a maximum energy density of 37.3 Wh kg−1 at a power density of 800 W kg−1. Even at harsh conditions (8 kW kg−1), an energy density of 15.64 Wh kg−1 is registered for the β‐Co(OH)2∥AC assembly. Such an impressive performance of β‐Co(OH)2 nanosheets in the asymmetric configuration reveals the emergence of pseudocapacitive electrodes towards the fabrication of high‐energy electrochemical charge storage systems.  相似文献   

9.
The first effective organopolymerization of the biorenewable “non‐polymerizable” γ‐butyrolactone (γ‐BL) to a high‐molecular‐weight metal‐free recyclable polyester is reported. The superbase tert‐Bu‐P4 is found to directly initiate this polymerization through deprotonation of γ‐BL to generate reactive enolate species. When combined with a suitable alcohol, the tert‐Bu‐P4‐based system rapidly converts γ‐BL into polyesters with high monomer conversions (up to 90 %), high molecular weights (Mn up to 26.7 kg mol?1), and complete recyclability (quantitative γ‐BL recovery).  相似文献   

10.
Lithium‐ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low‐temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li3V2(PO4)3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li+ extraction from Li3V2(PO4)3 is used to prelithiate the hard carbon. Then, the self‐formed Li2V2(PO4)3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg−1, a maximum power density of 8291 W kg−1 and a long life of 2000 cycles. When operated at −40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs.  相似文献   

11.
In general, the conductivity of polypyrrole (PPy) is reduced by addition of magnetic nanoparticles as the additives owing to insulating effect of magnetic nanoparticles. In this article, novel electromagnetic functionalized PPy composite nanostructures were prepared by a template‐free method associated with γ‐Fe2O3 nano‐needles as the hard templates in the presence of p‐toluene‐sulfonic acid (p‐TSA) and FeCl3·6H2O as the dopant and oxidant, respectively. It was found that the molar ratio of γ‐Fe2O3 to pyrrole monomer represented by [γ‐Fe2O3]/[Py] ratio strongly affected the morphology and the conductivity of the γ‐Fe2O3/PPy composite nanostructures. A growth mechanism for the composite nanostructures was proposed based on the variance of the morphology with the [γ‐Fe2O3]/[Py] ratio. Compared with previously reported γ‐Fe2O3/PPy composites, the as‐prepared novel composite nanostructures showed much higher conductivity (up to ~50 times higher). Moreover, the synthesized γ‐Fe2O3/PPy composite nanostructures displayed ferromagnetic behavior with a high coercive force. Explanations for these interesting observations were made in terms of the magnetic interaction between ferromagnetic γ‐Fe2O3 nano‐needles and spin‐polaron of PPy nanotubes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4446–4453, 2009  相似文献   

12.
The effect of manganese on the dispersion, reduction behavior and active states of surface of supported copper oxide catalysts have been investigated by XRD, temperature‐programmed reduction and XPS. The activity of methanol synthesis from CO2/H2 was also investigated. The catalytic activity over CuO‐MnOx/γ‐Al2O3 catalyst for CO2 hydrogenation is higher than that of CuO/γ‐Al2O3. The adding of manganese is beneficial in enhancing the dispersion of the supported copper oxide and make the TPR peak of the CuO‐MnKx/γ‐Al2O3 catalyst different from the individual supported copper and manganese oxide catalysts, which indicates that there exists strong interaction between the copper and manganese oxide. For the CuO/γ‐Al2O3 catalyst there are two reducible copper oxide species; α and β peaks are attributed to the reduction of highly dispersed copper oxide species and bulk CuO species, respectively. For the CuO‐MnOx/γ‐Al2O3 catalyst, four reduction peaks are observed, α peak is attributed to the dispersed copper oxide species; β peak is ascribed to the bulk CuO; γ peak is attributed to the reduction of high dispersed CuO interacting with manganese; δ peak may be the reduction of the manganese oxide interacting with copper oxide. XPS results show that Cu+ mostly existed on the working surface of the Cu‐Mn/γ‐Al2O3 catalysts. The activity was promoted by Cu with positive charge which was formed by means of long path exchange function between Cu? O? Mn. These results indicate that there is synergistic interaction between the copper and manganese oxide, which is responsible for the high activity of CO2 hydrogenation.  相似文献   

13.
Dimethyldichlorosilane, one of the most consumed organosilicon monomers in the industry, can be prepared in a highly efficient and environmentally friendly synthesis method of disproportionating methylchlorosilanes. However, the internal mechanism of the reaction remains unclear. In this paper, the mechanism catalyzed by AlCl3/MIL‐53(Al) and AlCl3/MIL‐53(Al)@γ‐Al2O3 catalysts was calculated at B3LYP/6‐311++G(3df, 2pd) level by using the density functional theory (DFT). The results showed that although the two catalysts had similar active structures, the catalytic effects were significantly different. The Lewis acid center on the surface of γ‐Al2O3 in the core‐shell catalyst is complementary to the classic Lewis acid AlCl3 through the spatial superposition effect, which greatly improves the Lewis acid catalytic activity of AlCl3/MIL‐53(Al)@γ‐Al2O3.  相似文献   

14.
《中国化学会会志》2018,65(8):960-969
In the present study, Fe2+ and Ni2+ immobilized on hydroxyapatite‐core‐shell γ‐Fe2O3 (γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+) with a high surface area has been synthesized and characterized by Fourier transform infrared (FTIR), X‐ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), and scanning electron microscope (SEM) techniques. Then, γ‐Fe2O3@HAp‐Fe2+ and γ‐Fe2O3@HAp‐Ni2+ were used as a new and magnetically recoverable nano catalyst for the selective oxidation of sulfides to sulfoxides with 33% aqueous H2O2 (0.5 mL) as an oxidant at room temperature in good to excellent yields and short reaction time. Nontoxicity of reagent, mild reaction condition, inexpensive and high catalytic activity, simple experimental procedure, short period of conversion and excellent yields, and ease of recovery from the reaction mixture using an external magnet are the advantages of the present method.  相似文献   

15.
An efficient chemoselective general procedure for the synthesis of γ‐substituted β,γ‐unsaturated α‐ketomethylthioesters from α,β‐unsaturated ketones has been achieved through an unprecedented PPh3?HBr‐DMSO mediated oxidative bromination and Kornblum oxidation sequence. The newly developed reagent system serves admirably for the synthesis of α‐bromoenals from enals. Furthermore, AuCl3‐catalyzed efficient access to 3(2H)‐furanones from the above intermediates under extremely mild conditions are described.  相似文献   

16.
We present a novel strategy for the scalable fabrication of γ‐Fe2O3@3DPCF, a three‐dimensional porous carbon framework (PCF) anchored ultra‐uniform and ultra‐stable γ‐Fe2O3 nanocatalyst. The γ‐Fe2O3@3DPCF nanocomposites were facilely prepared with the following route: condensation of iron(III) acetylacetonate with acetylacetonate at room temperature to form the polymer precursor (PPr), which was carbonized subsequently at 800 °C. The homogeneous aldol condensation offered an ultra‐uniform distribution of iron, so that the γ‐Fe2O3 nanoparticles (NPs) were uniformly distributed in the 3D carbon architecture with the average size of approximate 20 nm. The Fe2O3 NPs were capped with carbon, so that the iron oxide maintained its γ‐phase instead of the more stable α‐phase. The nanocomposite was an excellent catalyst for the reduction of nitroarene; it gave >99 % conversion and 100 % selectivity for the reduction of nitroarenes to the corresponding anilines at 100 °C. The fabrication of the γ‐Fe2O3@3DPCF nanocatalyst represents a green and scalable method for the synthesis of novel carbon‐based metal oxide nanostructures.  相似文献   

17.
We have synthesized and characterized perovskite‐type SrCo0.9Nb0.1O3−δ (SCN) as a novel anion‐intercalated electrode material for supercapacitors in an aqueous KOH electrolyte, demonstrating a very high volumetric capacitance of about 2034.6 F cm−3 (and gravimetric capacitance of ca. 773.6 F g−1) at a current density of 0.5 A g−1 while maintaining excellent cycling stability with a capacity retention of 95.7 % after 3000 cycles. When coupled with an activated carbon (AC) electrode, the SCN/AC asymmetric supercapacitor delivered a specific energy density as high as 37.6 Wh kg−1 with robust long‐term stability.  相似文献   

18.
Flowerlike noble‐metal‐free γ‐Fe2O3@NiO core–shell hierarchical nanostructures have been fabricated and examined as a catalyst in the photocatalytic oxidation of water with [Ru(bpy)3](ClO4)2 as a photosensitizer and Na2S2O8 as a sacrificial electron acceptor. An apparent TOF of 0.29 μmols?1 m?2 and oxygen yield of 51 % were obtained with γ‐Fe2O3@NiO. The γ‐Fe2O3@NiO core–shell hierarchical nanostructures could be easily separated from the reaction solution whilst maintaining excellent water‐oxidation activity in the fourth and fifth runs. The surface conditions of γ‐Fe2O3@NiO also remained unchanged after the photocatalytic reaction, as confirmed by X‐ray photoelectron spectroscopy (XPS).  相似文献   

19.
As advanced negative electrodes for powerful and useful high‐voltage bipolar batteries, an intercalated metal–organic framework (iMOF), 2,6‐naphthalene dicarboxylate dilithium, is described which has an organic‐inorganic layered structure of π‐stacked naphthalene and tetrahedral LiO4 units. The material shows a reversible two‐electron‐transfer Li intercalation at a flat potential of 0.8 V with a small polarization. Detailed crystal structure analysis during Li intercalation shows the layered framework to be maintained and its volume change is only 0.33 %. The material possesses two‐dimensional pathways for efficient electron and Li+ transport formed by Li‐doped naphthalene packing and tetrahedral LiO3C network. A cell with a high potential operating LiNi0.5Mn1.5O4 spinel positive and the proposed negative electrodes exhibited favorable cycle performance (96 % capacity retention after 100 cycles), high specific energy (300 Wh kg?1), and high specific power (5 kW kg?1). An 8 V bipolar cell was also constructed by connecting only two cells in series.  相似文献   

20.
The Li4+xMxSi4+xO4‐yLi2O (M=Al, B; x = 0 to 0.6, y = 0 to 0.5) ion conductors were prepared by the Sol‐Gel method and examined in detail. The powder and sintered samples were characterized by DTA‐TG, XRD, SEM, and AC impedance techniques. The experimental results show that the conductivity and sinterability in creased with the amount of excess lithium oxide in the silicate. The Li2O phase acts as a flux to accelerate the sintering process and to obtain high conductivity of grain boundaries. The particle size of the sintered pellets is about 0.25 μm. The maximum conductivity at 200 °C is 5.40 × 10?3s cm?1 for Li4.4Al0.4 Si0.6O4‐0.3Li2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号