首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
Ibis paper reports the properties of the novel tetra‐p‐nitro‐tetra‐O‐alkyl‐calix[4]arenes (alkyl= n‐C4H9, 1; n‐C8H17 2; n‐C12H25, 3; n‐C16H33, 4). X‐ray crystallographic analysis and 1H NMR revealed that they exist as pinched‐cone conformation in crystal or cone conformation in solution. EFISH experiments at 1064 nm in CHCl3, indicated that tetra‐p‐nitro‐tetra‐O‐butyl‐calix[4]arene (1) has higher hyperpolarizability β, values than the corresponding reference compound p‐nitro‐phenyl butyl ether, without red shift of the charge transfer band. Compounds 2, 3 and 4 with longer alkyl chains can form monolayer at the air/water.  相似文献   

2.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

3.
The first two crystal structures of en­amines derived from 1‐n‐alkyl‐3‐methyl‐5‐pyrazolones, namely 1‐(n‐hexyl)‐3‐methyl‐4‐[1‐(phenyl­amino)­propyl­idene]‐2‐pyrazolin‐5‐one, C19H27N3O, (I), and N,N′‐bis{1‐[1‐(n‐hexyl)‐3‐methyl‐5‐oxo‐2‐pyrazolin‐4‐yl­idene]­ethyl}hexane‐1,6‐di­amine, C30H52N6O2, (II), are reported. The mol­ecule of (II) lies about an inversion centre. Both (I) and (II) are stabilized by intramolecular N—H⋯O hydrogen bonding. This confirms previous results based on spectroscopic evidence alone.  相似文献   

4.
A series of 3‐(3‐hydroxyphenyl)‐4‐alkyl‐3,4‐dihydrobenzo[e][1,3]oxazepine‐1,5‐dione compounds with general formula CnH2n+1CNO(CO)2C6H4(C6H4OH) in which n are even parity numbers from 2 to 18. The structure determinations on these compounds were performed by FT‐IR spectroscopy which indicated that the terminal alkyl chain attached to the oxazepine ring was fully extended. Conformational analysis in DMSO at ambient temperature was carried out for the first time via high resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

5.
The synthesis of a novel benzimidazole derivative with a long‐chain‐ester substituent, namely methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate, (3), is reported. Ester (3) shows evidence of aggregation in solution and weak gelation ability with toluene. The octan‐1‐ol solvate, methyl 8‐[4‐(1H‐benzimidazol‐2‐yl)phenoxy]octanoate octan‐1‐ol monosolvate, C22H26N2O3·C8H18O, (4), exhibits a four‐molecule hydrogen‐bonded motif in the solid state, with N—H…O hydrogen bonds between benzimidazole molecules and O—H…N hydrogen bonds between the octan‐1‐ol solvent molecules and the benzimidazole unit. The alkyl chains of the ester and the octan‐1‐ol molecules are in unfolded conformations. The phenylene ring is canted by 10.27 (6)° from the plane of the benzimidazole ring system. H…C contacts make up 20.7% of the Hirshfeld surface coverage. Weak C—H…π interactions involving the benzimidazole alkyl chain and three aromatic rings are observed.  相似文献   

6.
A novel one‐pot method was developed for the preparation of [Ti(η5‐C5H5)(η7‐C7H7)] (troticene, 1 ) by reaction of sodium cyclopentadienide (NaCp) with [TiCl4(thf)2], followed by reduction of the intermediate [(η5‐C5H5)2TiCl2] with magnesium in the presence of cycloheptatriene (C7H8). The [n]troticenophanes 3 (n=1), 4 , 8 , 10 (n=2), and 11 (n=3) were synthesized by salt elimination reactions between dilithiated troticene, [Ti(η5‐C5H4Li)(η7‐C7H6Li)] ? pmdta ( 2 ) (pmdta=N,N′,N′,N′′,N′′‐pentamethyldiethylenetriamine), and the appropriate organoelement dichlorides Cl2Sn(Mes)2 (Mes=2,4,6‐trimethylphenyl), Cl2Sn2(tBu)4, Cl2B2(NMe2)2, Cl2Si2Me4, and (ClSiMe2)2CH2, respectively. Their structural characterization was carried out by single‐crystal X‐ray diffraction and multinuclear NMR spectroscopy. The stanna[1]‐ and stanna[2]troticenophanes 3 and 4 represent the first heteroleptic sandwich complexes bearing Sn atoms in the ansa bridge. The reaction of 3 with [Pt(PEt3)3] resulted in regioselective insertion of the [Pt(PEt3)2] fragment into the Sn? Cipso bond between the tin atom and the seven‐membered ring, which afforded the platinastanna[2]troticenophane 5 . Oxidative addition was also observed upon treatment of 4 with elemental sulfur or selenium, to produce the [3]troticenophanes [Ti(η5‐C5H4SntBu2)(η7‐C7H6SntBu2)E] ( 6 : E=S; 7 : E=Se). The B? B bond of the bora[2]troticenophane 8 was readily cleaved by reaction with [Pt(PEt3)3] to form the corresponding oxidative addition product [Ti(η5‐C5H4BNMe2)(η7‐C7H6BNMe2)Pt(PEt3)2] ( 9 ). The solid‐state structures of compounds 5 , 6 , and 9 were also determined by single‐crystal X‐ray diffraction.  相似文献   

7.
A new series of palladium complexes ( Pd1–Pd5 ) ligated by symmetrical 2,3‐diiminobutane derivatives, 2,3‐bis[2,6‐bis{bis(4‐FC6H4)2CH}2‐4‐(alkyl)C6H2N]C4H6 (alkyl = Me L1 , Et L2 , i Pr L3 , t Bu L4 ) and 2,3‐bis[2,6‐bis{bis(C6H5)2CH}2‐4‐{(CH3)3C}C6H2N]C4H6 L5 , have been prepared and well characterized, and their catalytic scope toward ethylene polymerization have been investigated. Upon activation with MAO, all palladium complexes ( Pd1–Pd5) exhibited good activities (up to 1.44 × 106 g (PE) mol?1(Pd) h?1) and produced higher molecular weight polyethylene in the range of 105 g mol?1 with precise molecular weight distribution (M w/M n = 1.37–1.77). One of the long‐standing limiting features of the Brookhart type α‐diimine Pd(II) catalysts is that they produce highly branched (ca. 100/1000 C atoms) and totally amorphous polymer. Conversely, herein Pd5 produced polymers having dramatically lower branching number (28/1000) as well as improved melting temperature up to 73.1 °C showing well‐controlled linear architecture, and very similar to polyethylene materials generated by early‐transition‐metal based catalysts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3214–3222  相似文献   

8.
Semirigid organic ligands can adopt different conformations to construct coordination polymers with more diverse structures when compared to those constructed from rigid ligands. A new asymmetric semirigid organic ligand, 4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine ( L ), has been prepared and used to synthesize three bimetallic macrocyclic complexes and one coordination polymer, namely, bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[dichloridozinc(II)] dichloromethane disolvate, [Zn2Cl4(C12H10N6)2]·2CH2Cl2, ( I ), the analogous chloroform monosolvate, [Zn2Cl4(C12H10N6)2]·CHCl3, ( II ), bis(μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine)bis[diiodidozinc(II)] dichloromethane disolvate, [Zn2I4(C12H10N6)2]·2CH2Cl2, ( III ), and catena‐poly[[[diiodidozinc(II)]‐μ‐4‐{2‐[(pyridin‐3‐yl)methyl]‐2H‐tetrazol‐5‐yl}pyridine] chloroform monosolvate], {[ZnI2(C12H10N6)]·CHCl3}n, ( IV ), by solution reaction with ZnX2 (X = Cl and I) in a CH2Cl2/CH3OH or CHCl3/CH3OH mixed solvent system at room temperature. Complex ( I ) is isomorphic with complex ( III ) and has a bimetallic ring possessing similar coordination environments for both of the ZnII cations. Although complex ( II ) also contains a bimetallic ring, the two ZnII cations have different coordination environments. Under the influence of the I? anion and guest CHCl3 molecule, complex ( IV ) displays a significantly different structure with respect to complexes ( I )–( III ). C—H…Cl and C—H…N hydrogen bonds, and π–π stacking or C—Cl…π interactions exist in complexes ( I )–( IV ), and these weak interactions play an important role in the three‐dimensional structures of ( I )–( IV ) in the solid state. In addition, the fluorescence properties of L and complexes ( I )–( IV ) were investigated.  相似文献   

9.
We report here for the first time a cocrystal of the so‐called neutral calix[4]tube, which is two tail‐to‐tail‐arranged and partially deprotonated tetrakis(carboxymethoxy)calix[4]arenes, including three sodium ions, with 2‐(thiophen‐2‐yl)‐1,3‐benzothiazole, namely trisodium bis(carboxymethoxy)bis(carboxylatomethoxy)calix[4]arene tris(carboxymethoxy)(carboxylatomethoxy)calix[4]arene–2‐(thiophen‐2‐yl)‐1,3‐benzothiazole–dimethyl sulfoxide–water (1/1/2/2), 3Na+·C36H30O122?·C36H31O12?·C11H7NS2·2C2H6OS·2H2O, which provides a new approach into the host–guest chemistry of inclusion complexes. Three packing polymorphs of the same benzothiazole with high Z′ (one with Z′ = 8 and two with Z′ = 4) were also discovered in the course of our desired cocrystallization. The inspection of these polymorphs and a previously known polymorph with Z′ = 2 revealed that Z′ increases as the strength of intermolecular contacts decreases. Also, these results expand the frontier of invoking calixarenes as a host for nonsolvent small molecules, besides providing knowledge on the rare formation of high‐Z′ packing polymorphs of simple molecules, such as the target benzothiazole.  相似文献   

10.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

11.
An improved, high‐yield, one‐pot synthetic procedure for water‐soluble ligands functionalized with trialkyl ammonium side groups H2N(CH2)2NHSO2p‐C6H4CH2[NMe2(CnH2n+1)]+ ( [HL n ]+ ; n=8, 16) was developed. The corresponding new surface‐active complexes [(p‐cymene)RuCl( L n )] and [Cp*RhCl( L n )] (Cp*=η5‐C5Me5) were prepared and characterized. For n=16 micelles are formed in water at concentrations as low as 0.6 mM , as demonstrated by surface‐tension measurements. The complexes were used for catalytic transfer hydrogenation of ketones with formate in water. Highly active catalyst systems were obtained in the case of complexes bearing C16 tails due to their ability to be adsorbed at the water/substrate interface. The scope of these catalyst systems in aqueous solutions was extended from partially water soluble aryl alkyl ketones (acetophenone, butyrophenone) to hydrophobic dialkyl ketones (2‐dodecanone).  相似文献   

12.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

13.
A wide range of potential ligand precursors and related compounds have been synthesized from ferrocenyldibromoborane and ferrocenylenebis(dibromoborane) via salt elimination reactions. These comprise ligand precursors suitable for the preparation of (i) ansa‐metallocenes such as [FcB(η1‐C5H5)2] ( 2 ), [FcB(1‐C9H7)2] ( 3 ), [FcB(3‐C9H7)2] ( 4 ) and [1,1′‐fc{B(3‐C9H7)2}2] ( 11 ), (ii) constrained geometry complexes such as [FcB(1‐C9H7)N(H)Ph] ( 7 ) and [FcB(3‐C9H7)N(H)Ph] ( 8 ), (iii) ansa‐diamido complexes such as [FcB(N(H)Ph)2] ( 9 ) as well as (iv) the related compounds [FcB(Br)N(H)tBu] ( 5 ), [FcB(Br)N(H)Ph] ( 6 ), [1,1′‐fc{B(Br)N(SiMe3)2}2] ( 12 ) and [1,1′‐fc{B(Br)NiPr2}2] ( 13 ) (Fc = ferrocenyl, fc = ferrocenylene, C5H5 = cyclopentadienyl, C9H7 = indenyl). All new compounds have been characterised by multinuclear NMR spectroscopic techniques and in the case of 7 and 12 by X‐ray diffraction methods.  相似文献   

14.
Efficient separation of n‐butene (n‐C4H8) and iso‐butene (iso‐C4H8) is of significance for the upgrading of C4 olefins to high‐value end products but remains one of the major challenges in hydrocarbon purifications owing to their similar structures. Herein, we report a flexible metal‐organic framework, MnINA (INA=isonicotinate), featuring one‐dimensional pore channels with periodically large pocket‐like cavities connected by narrow bottlenecks, for the first time for efficient n‐/iso‐C4H8 separation. MnINA with smaller pore size (4.62 Å) compared with CuINA (4.84 Å), exhibits steep adsorption isotherms and high capacity of 1.79 mmol g?1 for n‐C4H8 (4.46 Å) through strong host‐guest interactions via C?H???π bonding. The narrow bottlenecks exert barriers for the large molecules of iso‐C4H8 (4.84 Å) within the gate‐opening pressure range of 0–0.1 bar. This gives rise to MnINA with excellent separation selectivity of 327.7 for n‐/iso‐C4H8 mixture. The adsorption mechanism for n‐C4H8 and the gate‐opening effect were investigated by dispersion‐corrected density functional (DFT‐D) theory, verifying the strong interactions between n‐C4H8 and the frameworks as well as the gate‐opening effect derived from the rotation of organic linkers. The breakthrough tests confirmed MnINA and CuINA can be promising candidates for n‐/iso‐C4H8 separation.  相似文献   

15.
Two (ONO pincer)ruthenium‐complex‐bound norvalines, Boc?[Ru(pydc)(terpy)]Nva?OMe ( 1 ; Boc=tert‐butyloxycarbonyl, terpy=terpyridyl, Nva=norvaline) and Boc?[Ru(pydc)(tBu‐terpy)]Nva?OMe ( 5 ), were successfully synthesized and their molecular structures and absolute configurations were unequivocally determined by single‐crystal X‐ray diffraction. The robustness of the pincer Ru complexes and norvaline scaffolds against acidic/basic, oxidizing, and high‐temperature conditions enabled us to perform selective transformations of the N‐Boc and C?OMe termini into various functional groups, such as alkyl amide, alkyl urea, and polyether groups, without the loss of the Ru center or enantiomeric purity. The resulting dialkylated Ru‐bound norvaline, n‐C11H23CO?l ‐[Ru(pydc)(terpy)]Nva?NH‐n‐C11H23 (l ‐ 4 ) was found to have excellent self‐assembly properties in organic solvents, thereby affording the corresponding supramolecular gels. Ru‐bound norvaline l ‐ 1 exhibited a higher catalytic activity for the oxidation of alcohols by H2O2 than parent complex [Ru(pydc)(terpy)] ( 11 a ).  相似文献   

16.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

17.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

18.
The adsorption behaviour of the CdII–MOF {[Cd(L)2(ClO4)2]·H2O ( 1 ), where L is 4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole, for butan‐2‐one was investigated in a single‐crystal‐to‐single‐crystal (SCSC) fashion. A new host–guest system that encapsulated butan‐2‐one molecules, namely poly[[bis{μ3‐4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole}cadmium(II)] bis(perchlorate) butanone sesquisolvate], {[Cd(C24H18N6)2](ClO4)2·1.5C4H8O}n, denoted C4H8O@Cd‐MOF ( 2 ), was obtained via an SCSC transformation. MOF 2 crystallizes in the tetragonal space group P43212. The specific binding sites for butan‐2‐one in the host were determined by single‐crystal X‐ray diffraction studies. N—H…O and C—H…O hydrogen‐bonding interactions and C—H…π interactions between the framework, ClO4? anions and guest molecules co‐operatively bind 1.5 butan‐2‐one molecules within the channels. The adsorption behaviour was further evidenced by 1H NMR, IR, TGA and powder X‐ray diffraction experiments, which are consistent with the single‐crystal X‐ray analysis. A 1H NMR experiment demonstrates that the supramolecular interactions between the framework, ClO4? anions and guest molecules in MOF 2 lead to a high butan‐2‐one uptake in the channel.  相似文献   

19.
Two pseudo‐polymorphic polymers, poly[ethylenediammonium [[aquacopper(II)]‐μ4‐benzene‐1,2,4,5‐tetracarboxylato] dihydrate], {(C2H10N2)[Cu(C10H2O8)(H2O)]·2H2O}n, (I), and poly[ethylenediammonium [copper(II)‐μ4‐benzene‐1,2,4,5‐tetracarboxylato] 2.5‐hydrate], {(C2H10N2)[Cu(C10H2O8)]·2.5H2O}n, (II), contain two‐dimensional anionic layers, ethylenediammonium (H2en) cations acting as counter‐ions and free water molecules. Although the topological structures of the two anionic layers are homologous, the coordination environments of the CuII centres are different. In (I), the CuII centre, sitting on a general position, has a square‐pyramidal environment. The two independent benzene‐1,2,4,5‐tetracarboxylate (btc) anions rest on centres of inversion. The CuII cation in (II) is located on a twofold axis in a square‐planar coordination. The H2en cation is on an inversion centre and the btc ligand is split by a mirror plane. Extensive hydrogen‐bonding interactions between the complexes, H2en cations and water molecules lead to the formation of three‐dimensional supramolecular structures.  相似文献   

20.
A new series of platinum(II) complexes with tridentate ligands 2,6‐bis(1‐alkyl‐1,2,3‐triazol‐4‐yl)pyridine and 2,6‐bis(1‐aryl‐1,2,3‐triazol‐4‐yl)pyridine (N7R), [Pt(N7R)Cl]X ( 1 – 7 ) and [Pt(N7R)(C?CR′)]X ( 8 – 17 ; R=n‐C4H9, n‐C8H17, n‐C12H25, n‐C14H29, n‐C18H37, C6H5, and CH2‐C6H5; R′=C6H5, C6H4‐CH3p, C6H4‐CF3p, C6H4‐N(CH3)2p, and cholesteryl 2‐propyn‐1‐yl carbonate; X=OTf?, PF6?, and Cl?), has been synthesized and characterized. Their electrochemical and photophysical properties have also been studied. Two amphiphilic platinum(II)? 2,6‐bis(1‐dodecyl‐1,2,3‐triazol‐4‐yl)pyridine complexes ( 3‐Cl and 8 ) were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air/water interface. These LB films were characterized by the study of their surface‐pressure–molecular‐area (π–A) isotherms, XRD, and IR and polarized‐IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号