首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

2.
Herein, Pt‐decorated TiO2 nanocube hierarchy structure (Pt‐TNCB) was fabricated by a facile solvothermal synthesis and in‐situ photodeposition strategy. The Pt‐TNCB exhibits an excellent solar‐driven photocatalytic hydrogen evolution rate (337.84 μmol h?1), which is about 37 times higher than that of TNCB (9.19 μmol h?1). Interestingly, its photocatalytic property is still superior to TNCB with post modification Pt (1 wt %) (208.11 μmol h?1). The introduction of Pt efficiently extends the photoresponse of the composite material from UV to visible light region, simultaneously boosting their solar‐driven photocatalytic performance, which attribute to the porous structure, the sub size TNCB, the SPR effect of Pt NPs and strong interaction of two components. In fact, Pt NPs can enhance collective oscillations on delocalized electrons, which is conducive to capture electrons and hinder the recombination of photogenerated electron‐hole pairs, leading to the longer lifetime of photogenerated charges. The fabrication of Pt‐TNCB photocatalyst with SPR effect may provide a promising method to improve visible‐light photocatalytic activities for traditional photocatalysts.  相似文献   

3.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

4.
Recently, the emergence of photoactive metal–organic frameworks (MOFs) has given great prospects for their applications as photocatalytic materials in visible‐light‐driven hydrogen evolution. Herein, a highly photoactive visible‐light‐driven material for H2 evolution was prepared by introducing methylthio terephthalate into a MOF lattice via solvent‐assisted ligand‐exchange method. Accordingly, a first methylthio‐functionalized porous MOF decorated with Pt co‐catalyst for efficient photocatalytic H2 evolution was achieved, which exhibited a high quantum yield (8.90 %) at 420 nm by use sacrificial triethanolamine. This hybrid material exhibited perfect H2 production rate as high as 3814.0 μmol g?1 h?1, which even is one order of magnitude higher than that of the state‐of‐the‐art Pt/MOF photocatalyst derived from aminoterephthalate.  相似文献   

5.
ZnIn2S4 microspheres (ZIS MSs) were for the first time decorated with carbon quantum dots (CQDs) and platinum nanoparticles (NPs) as dual co‐catalysts of for photocatalytic H2 production. The ZIS MSs co‐loaded with CQDs and Pt exhibited a high photocatalytic H2 production rate of 1032.2 μmol h?1 g?1 with an apparent quantum efficiency of 2.2 % (420 nm) in triethanolamine aqueous solution under visible‐light irradiation, which was much higher than the respective photocatalytic rates of pure ZIS, Pt loaded ZIS, and CQDs‐decorated ZIS. Such a great enhancement was attributed to the integrative effect of good crystallization, enhanced light absorption, high electrical conductivity of CQDs, and the vectorial electron transfer from ZIS to CQDs and Pt NPs (ZIS→CQDs→Pt).  相似文献   

6.
CdS nanoparticles were deposited on a highly stable, two‐dimensional (2D) covalent organic framework (COF) matrix and the hybrid was tested for photocatalytic hydrogen production. The efficiency of CdS‐COF hybrid was investigated by varying the COF content. On the introduction of just 1 wt % of COF, a dramatic tenfold increase in the overall photocatalytic activity of the hybrid was observed. Among the various hybrids synthesized, that with 10 wt % COF, named CdS‐COF (90:10), was found to exhibit a steep H2 production amounting to 3678 μmol h?1 g?1, which is significantly higher than that of bulk CdS particles (124 μmol h?1 g?1). The presence of a π‐conjugated backbone, high surface area, and occurrence of abundant 2D hetero‐interface highlight the usage of COF as an effective support for stabilizing the generated photoelectrons, thereby resulting in an efficient and high photocatalytic activity.  相似文献   

7.
Photocatalytic water splitting for H2 evolution is regarded as the most promising way to overcome the energy and environmental crisis. Pt clusters as a cocatalyst can efficiently enhance the performance of H2 generation in most photocatalysts, but the activity is still unsatisfied. By tuning the electronic structures of materials, one can develop catalysts with enhanced activity. Here we synthesize a Pt–Au alloy with subnano size as cocatalyst on TiO2 nanosheets for photocatalytic H2 generation that shows an outstanding activity with a H2 generation rate of 80.1 μmol h?1 for at least 100 h. The activity is twice than the pure Pt cocatalyst, mainly because the optimized hydrogen adsorption energy on Pt cluster is tuned by Au atoms.  相似文献   

8.
The facile electron–hole pair recombination in earth‐abundant transition‐metal oxides is a major limitation for the development of highly efficient hydrogen evolution photocatalysts. In this work, the thickness of a layered β‐CoOOH semiconductor that contains metal/hydroxy groups was reduced to obtain an atomically thin, two‐dimensional nanostructure. Analysis by ultrafast transient absorption spectroscopy revealed that electron–hole recombination is almost suppressed in the as‐prepared 1.3 nm thick β‐CoOOH nanosheet, which leads to prominent electron–hole separation efficiencies of 60–90 % upon irradiation at 350–450 nm, which are ten times higher than those of the bulk counterpart. X‐ray absorption spectroscopy and first‐principles calculations demonstrate that [HO?CoO6?x] species on the nanosheet surface promote H+ adsorption and H2 desorption. An aqueous suspension of the β‐CoOOH nanosheets exhibited a high hydrogen production rate of 160 μmol g?1 h?1 even when the system was operated for hundreds of hours.  相似文献   

9.
Two‐dimensional covalent organic frameworks (2D COFs), an emerging class of crystalline porous polymers, have been recognized as a new platform for efficient solar‐to‐hydrogen energy conversion owing to their pre‐designable structures and tailor‐made functions. Herein, we demonstrate that slight modulation of the chemical structure of a typical photoactive 2D COF (Py‐HTP‐BT‐COF) via chlorination (Py‐ClTP‐BT‐COF) and fluorination (Py‐FTP‐BT‐COF) can lead to dramatically enhanced photocatalytic H2 evolution rates (HER=177.50 μmol h?1 with a high apparent quantum efficiency (AQE) of 8.45 % for Py‐ClTP‐BT‐COF). Halogen modulation at the photoactive benzothiadiazole moiety can efficiently suppress charge recombination and significantly reduce the energy barrier associated with the formation of H intermediate species (H*) on polymer surface. Our findings provide new prospects toward design and synthesis of highly active organic photocatalysts toward solar‐to‐chemical energy conversion.  相似文献   

10.
Herein, multifunctional N‐doped carbon nanodots (NCNDs) were prepared through the one‐step hydrothermal treatment of yeast. Results show that the NCNDs can be used as a new photocatalyst to drive the water‐splitting reaction under UV light. Moreover, the NCNDs can efficiently catalyze the hydrogen evolution reaction. Under visible‐light irradiation, Eosin Y‐sensitized NCNDs exhibit excellent activity for hydrogen evolution. The hydrogen evolution rate of NCNDs (without any modification and co‐catalyst) reaches 107.1 μmol h?1 (2142 μmol g?1 h?1). When Pt is loaded on the NCNDs, the hydrogen evolution rate reaches 491.2 μmol h?1 (9824 μmol g?1 h?1) under visible‐light irradiation. In addition, the NCNDs show excellent fluorescent properties and can be applied as a fluorescent probe for the sensitive and selective detection of Fe3+.  相似文献   

11.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF‐HUST‐A1 with a benzylamine‐functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF‐HUST‐A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g?1 h?1). Photocatalytic overall water splitting is achieved by depositing dual co‐catalysts in CTF‐HUST‐A1, with H2 evolution and O2 evolution rates of 25.4 μmol g?1 h?1 and 12.9 μmol g?1 h?1 in pure water without using sacrificial agent.  相似文献   

12.
A surfactant‐stabilized coordination strategy is used to make two‐dimensional (2D) single‐atom catalysts (SACs) with an ultrahigh Pt loading of 12.0 wt %, by assembly of pre‐formed single Pt atom coordinated porphyrin precursors into free‐standing metal–organic framework (MOF) nanosheets with an ultrathin thickness of 2.4±0.9 nm. This is the first example of 2D MOF‐based SACs. Remarkably, the 2D SACs exhibit a record‐high photocatalytic H2 evolution rate of 11 320 μmol g?1 h?1 via water splitting under visible light irradiation (λ>420 nm) compared with those of reported MOF‐based photocatalysts. Moreover, the MOF nanosheets can be readily drop‐casted onto solid substrates, forming thin films while still retaining their photocatalytic activity, which is highly desirable for practical solar H2 production.  相似文献   

13.
Photocatalytic hydrogen (H2) evolution represents a promising and sustainable technology. Covalent organic frameworks (COFs)-based photocatalysts have received growing attention. A 2D fully conjugated ethylene-linked COF (BTT-BPy-COF) was fabricated with a dedicated designed active site. The introduced bipyridine sites enable a facile post-protonation strategy to fine-tune the actives sites, which results in a largely improved charge-separation efficiency and increased hydrophilicity in the pore channels synergically. After modulating the degree of protonation, the optimal BTT-BPy-PCOF exhibits a remarkable H2 evolution rate of 15.8 mmol g−1 h−1 under visible light, which surpasses the biphenyl-based COF 6 times. By using different types of acids, the post-protonation is proved to be a potential universal strategy for promoting photocatalytic H2 evolution. This strategy would provide important guidance for the design of highly efficient organic semiconductor photocatalysts.  相似文献   

14.
Photo–thermo catalysis, which integrates photocatalysis on semiconductors with thermocatalysis on supported nonplasmonic metals, has emerged as an attractive approach to improve catalytic performance. However, an understanding of the mechanisms in operation is missing from both the thermo‐ and photocatalytic perspectives. Deep insights into photo–thermo catalysis are achieved via the catalytic oxidation of propane (C3H8) over a Pt/TiO2‐WO3 catalyst that severely suffers from oxygen poisoning at high O2/C3H8 ratios. After introducing UV/Vis light, the reaction temperature required to achieve 70 % conversion of C3H8 lowers to a record‐breaking 90 °C from 324 °C and the apparent activation energy drops from 130 kJ mol?1 to 11 kJ mol?1. Furthermore, the reaction order of O2 is ?1.4 in dark but reverses to 0.1 under light, thereby suppressing oxygen poisoning of the Pt catalyst. An underlying mechanism is proposed based on direct evidence of the in‐situ‐captured reaction intermediates.  相似文献   

15.
Single‐atom catalysts are promising platforms for heterogeneous catalysis, especially for clean energy conversion, storage, and utilization. Although great efforts have been made to examine the bonding and oxidation state of single‐atom catalysts before and/or after catalytic reactions, when information about dynamic evolution is not sufficient, the underlying mechanisms are often overlooked. Herein, we report the direct observation of the charge transfer and bond evolution of a single‐atom Pt/C3N4 catalyst in photocatalytic water splitting by synchronous illumination X‐ray photoelectron spectroscopy. Specifically, under light excitation, we observed Pt?N bond cleavage to form a Pt0 species and the corresponding C=N bond reconstruction; these features could not be detected on the metallic platinum‐decorated C3N4 catalyst. As expected, H2 production activity (14.7 mmol h?1 g?1) was enhanced significantly with the single‐atom Pt/C3N4 catalyst as compared to metallic Pt‐C3N4 (0.74 mmol h?1 g?1).  相似文献   

16.
A rapid and scalable synthesis of six new imine‐linked highly porous and crystalline COFs is presented that feature exceptionally high chemical stability in harsh environments including conc. H2SO4 (18 m ), conc. HCl (12 m ), and NaOH (9 m ). This is because of the presence of strong interlayer C?H???N hydrogen bonding among the individual layers, which provides significant steric hindrance and a hydrophobic environment around the imine (?C=N?) bonds, thus preventing their hydrolysis in such an abrasive environment. These COFs were further converted into porous, crystalline, self‐standing, and crack‐free COF membranes (COFMs) with extremely high chemical stability for their potential applications for sulfuric acid recovery. The as‐synthesized COFMs exhibit unprecedented permeance for acetonitrile (280 Lm?2 h?1 bar?1) and acetone (260 Lm?2 h?1 bar?1).  相似文献   

17.
The hydroconversion of cyclohexene (CHE) using monometallic catalysts containing 0.35wt% of Pt, Pd, Ir or Re on a γ‐alumina support, as well as bimetallic catalysts containing combinations of 0.35wt% Pt with 0.35wt% of either Pd, Ir or Re on γ‐alumina, were investigated in a plug flow‐type fixed‐bed reactor. The Cyclohexene (CHE) feed was injected continuously with a rate of 8.33 × 10?3mole h?1 on 0.2 g of catalyst using a simultaneous hydrogen gas flow of 20 cm3 min?1 throughout a broad reaction temperature range of 50–400 °C. The dispersion of the metals in the catalysts was determined via H2 or CO chemisorption. The activities of the monometallic catalysts were found to be in the order: Pd > Pt > Ir > Re, whereas those of the bimetallic catalysts were in the order: PtPd > PtIr > PtRe. Cyclohexene hydrogenation and dehydrogenation reactions using the current mono‐ and bimetallic catalysts were kinetically investigated applying the absolute reaction rate theory, whereby reaction rate constant, activation energy, enthalpy and entropy of activation were computed to explain surface variations on these catalysts.  相似文献   

18.
Semiconductive property of elementary substance is an interesting and attractive phenomenon. We obtain a breakthrough that fibrous phase red phosphorus, a recent discovered modification of red phosphorus by Ruck et al., can work as a semiconductor photocatalyst for visible‐light‐driven hydrogen (H2) evolution. Small sized fibrous phosphorus is obtained by 1) loading it on photoinactive SiO2 fibers or by 2) smashing it ultrasonically. They display the steady hydrogen evolution rates of 633 μmol h?1 g?1 and 684 μmol h?1 g?1, respectively. These values are much higher than previous amorphous P (0.6 μmol h?1 g?1) and Hittorf P (1.6 μmol h?1 g?1). Moreover, they are the highest records in the family of elemental photocatalysts to date. This discovery is helpful for further understanding the semiconductive property of elementary substance. It is also favorable for the development of elemental photocatalysts.  相似文献   

19.
The synthesis of fully conjugated sp2‐carbon covalent organic frameworks (COF) is extremely challenging given the difficulty of the formation of very stable carbon‐carbon double bonds (‐C=C‐). Here, we report the successful preparation of a 2D COF (TP‐COF) based on triazine as central planar units bridged by sp2‐carbon linkers through the ‐C=C‐ condensation reaction. High‐resolution‐transmission electron microscopy (HRTEM) clearly confirmed the tessellated hexagonal pore structure with a pore center‐to‐center distance of 2 nm. Powder X‐ray diffraction (PXRD) together with structural simulations revealed an AA stacking mode of the obtained layered structure. TP‐COF turned out to be an excellent semiconductor material with a LUMO energy of ?3.23 eV and a band gap of 2.36 eV. Excitingly, this novel sp2‐carbon conjugated TP‐COF exhibited unprecedented coenzyme regeneration efficiency and can significantly boost the coenzyme‐assisted synthesis of l ‐glutamate to a record‐breaking 97 % yield within 12 minutes.  相似文献   

20.
Graphene analogues of TaS2 and TiS2 (3–4 layers), prepared by Li intercalation followed by exfoliation in water, were characterized. Nanocomposites of CdS with few‐layer TiS2 and TaS2 were employed for the visible‐light‐induced H2 evolution reaction (HER). Benzyl alcohol was used as the sacrificial electron donor, which was oxidized to benzaldehyde during the reaction. Few‐layer TiS2 is a semiconductor with a band gap of 0.7 eV, and its nanocomposite with CdS showed an activity of 1000 μmol h?1 g?1. The nanocomposite of few‐layer TaS2, in contrast, gave rise to higher activity of 2320 μmol h?1 g?1, which was attributed to the metallic nature of few‐layer TaS2. The amount of hydrogen evolved after 20 and 16 h for the CdS/TiS2 and CdS/TaS2 nanocomposites was 14833 and 28132 μmol, respectively, with turnover frequencies of 0.24 and 0.57 h?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号