首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of oxygen atoms O(3P) on both ideal and hydrated rutile TiO(2)(110) surfaces is investigated by periodic density functional theory (DFT) calculations within the revised Perdew-Burke-Ernzerhof (RPBE) generalized gradient approximation and a four Ti-layer slab, with (2 x 1) and (3 x 1) surface unit cells. It is shown that upon adsorption on the TiO(2) surface the spin of the O atom is completely lost, leading to stable surface peroxide species on both in-plane and bridging oxygen sites with O-binding energies of about 1.0-1.5 eV, rather than to the kinetically unstable terminal Ti-O and terminal O-O species with smaller binding energies of 0.1-0.7 eV. Changes in O-atom coverage ratios between 1/3 and 1 molecular layer (ML) and coadsorption of H(2)O have only minor effects on the O-binding energies of the stable peroxide configurations. High O-atom diffusion barriers of about 1 eV are found, suggesting a slow recombination rate of adsorbed O atoms on TiO(2)(110). Our results suggest that the TiOOTi peroxide intermediate experimentally observed in photoelectrolysis of water should be interpreted as a single spinless O adatom on TiO(2) surface rather than as two Ti-O* radicals coupled together.  相似文献   

2.
An iron fiber optics catalytic probe has been constructed and applied for the real-time measuring of the O-atom density in an Ar/O2 afterglow. The recombination coefficient for the heterogeneous surface recombination of O atoms on the oxidized iron foil was measured at different temperatures between 400 and 950 K. The coefficient was found to be constant in the entire range of experimental conditions and had a value of 0.41 ± 0.12. The iron fiber optics catalytic probe has an advantage over the classical nickel fiber optics catalytic probe: the probe signal is higher for the iron probe due to a higher recombination coefficient thus causing an easier real-time monitoring of the O-atom density. The O-atom density was measured in an afterglow of microwave plasma created at different discharge powers up to 300 W, at a constant Ar flow rate of 1000 sccm/min and at different oxygen flow rates between 50 and 300 sccm/min. The O-atom density was found to be dependent on oxygen flow. At low oxygen flow rates up to 100 sccm/min, a saturation of the O-atom density was obtained at a certain discharge power, while at high oxygen flow rate the O-atom density kept increasing with the increasing power. The results were explained by gas phase and surface phenomena.  相似文献   

3.
Rotationally resolved, velocity distributions for desorbed O2 molecules formed by O-atom recombination on the surface of a polycrystalline Ag surface are reported. Surface O atoms are generated by oxygen permeation through a 0.25-mm-thick Ag foil heated to 1020 K. Desorbing O2 molecules are probed by (2 + 1) resonant multiphoton ionization via the C 3Pig (3ssigma), v' = 2 <-- <-- X 3Sigmag-, v" = 0 transition and time-of-flight mass spectrometry. Measured velocity distributions are near Maxwell-Boltzmann and yield average translational energies which are significantly lower than the surface temperature ([Et]/2kB approximately 515 K) and essentially independent of rotational excitation. Comparison of the observed C-X (2,0) resonantly enhanced multiphoton ionization spectrum with spectral simulations suggests that the v" = 0 rotational state distribution is more consistent with the surface temperature, but spectral congestion and apparent intensity perturbations prevent a more quantitative analysis. The calculated, sticking curves show a small barrier energy barrier (approximately 10 meV) beyond which sticking decreases. These observations are consistent with low energy desorption and adsorption pathways involving a weakly bound molecular O2 precursor.  相似文献   

4.
Adsorption of hydrogen and methane on a preirradiated surface of gamma-Al2O3 produces an afterglow, which has been described as a photoinduced chesorluminescence (PhICL), whose spectral features identify with the intrinsic photoluminescence of alumina. The emission spectrum consists of at least four overlapping single emission bands. For methane adsorption, the PhICL phenomenon is seen only if the solid is preirradiated in the presence of oxygen. Emission decay kinetics of the PhICL effect for gamma-Al2O3 reveal two wavelength regimes: a short wavelength regime at lambda = 300-370 nm (decay time tau = 1.1 +/- 0.2 s; signal width = 2.8 s), and a longer wavelength regime at lambda = 380-700 nm (decay time tau = 2.1 +/- 0.1 s; signal width = 4.3 s). A model is proposed in which there exist two different emission centers and, thus, two different pathways for emission decay. In the first, emission originates with electron trapping by such deep energy traps as anion vacancies {e- + Va --> F+ + hv1} to yield electron F-type color centers, whereas in the second, emission originates from electron/trapped hole recombination {e- + Os*- --> Os2- + hv2}. The first common step of the pathways is homolytic dissociative chemisorption of hydrogen and methane upon interaction with surface-active hole centers Os*-, produced upon preirradiation of alumina, to give atomic hydrogen H* and methyl radicals CH3*. Thermoprogrammed desorption spectra of photoadsorbed or postsorbed oxygen show that adsorbed oxygen interacts with atomic hydrogen and methyl radicals. The products of thermodesorption were H2O for hydrogen and H2O, CO2, and CH3CH3 for methane. The Solonitsyn memory effect coefficient was also evaluated for oxygen photoadsorption.  相似文献   

5.
The hole-induced photodesorption of chemisorbed O2 from a TiO2(110) single crystal has been employed to monitor the kinetics of electron-hole pair (e-h) formation and hole trapping. Excitation is produced by 3.4 +/- 0.05 eV photons at 110 K. Two separate O2 desorption processes have been found which are characteristic of low photon fluxes and high photon fluxes. At a critical photon flux, Fhnu(crit), the slow O2 photodesorption process suddenly converts to a fast process, signaling the saturation of hole traps in the TiO2 crystal. Consequently, this allows photogenerated holes to more efficiently reach the surface, causing more rapid O2 photodesorption. The estimated bulk concentration of hole traps is approximately 2.5 x 10(18) cm(-3), involving a fraction of about 3 x 10(-5) of the atomic sites in the bulk. Both the slow and fast O2 photodesorption processes are described by a rate law that is proportional to Fhnu(1/2), indicating that the steady-state concentration of holes, [h], is governed by second-order e-h pair recombination kinetics. Effective use is made of a hole scavenger molecule, adsorbed methanol (CH3OH), to probe the role of added hole traps on the rate of the photodesorption of adsorbed O2 molecules and on the magnitude of Fhnu(crit).  相似文献   

6.
In this study, we employed density functional theory (DFT) to investigate the oxidation of ammonia (NH(3)) on the IrO(2)(110) surface. We characterized the possible reaction pathways for the dehydrogenation of NH(x) species (x = 1-3) and for the formation of the oxidation products N(2), N(2)O, NO, NO(2), and H(2)O. The presence of oxygen atoms on coordinatively unsaturated sites (O(cus)) of the oxygen-rich IrO(2)(110) surface promotes the oxidation of NH(3) on the surface. In contrast, NH(3) molecules prefer undergoing desorption over oxidation on the stoichiometric IrO(2)(110) surface. Moreover, the O(cus) atoms are also the major oxidants leading to the formation of oxidation products; none of the oxidations mediated by the bridge oxygen atoms were favorable reactions. The energy barrier for formation of H(2)O as a gaseous oxidation product on the IrO(2)(110) surface is high (from 1.83 to 2.29 eV), potentially leading to the formation of nitrogen-atom-containing products at high temperature. In addition, the selectivity toward the nitrogen-atom-containing products is dominated by the coverage of O(cus) atoms on the surface; for example, a higher coverage of O(cus) atoms results in greater production of nitrogen oxides (NO, NO(2)).  相似文献   

7.
Reactions of atomic lanthanide cations (excluding Pm+) with D2O have been surveyed in the gas phase using an inductively coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer to measure rate coefficients and product distributions in He at 0.35+/-0.01 Torr and 295+/-2 K. Primary reaction channels were observed corresponding to O-atom transfer, OD transfer and D2O addition. O-atom transfer is the predominant reaction channel and occurs exclusively with Ce+, Nd+, Sm+, Gd+, Tb+ and Lu+. OD transfer is observed exclusively with Yb+, and competes with O-atom transfer in the reactions with La+ and Pr+. Slow D2O addition is observed with early lanthanide cation Eu+ and the late lanthanide cations Dy+, Ho+, Er+ and Tm+. Higher-order sequential D2O addition of up to five D2O molecules is observed with LnO+ and LnOD+. A delay of more than 50 kcal mol(-1) is observed in the onset of efficient exothermic O-atom transfer, which suggests the presence of kinetic barriers of perhaps this magnitude in the exothermic O-atom transfer reactions of Dy+, Ho+, Er) and Tm+ with D2O. The reaction efficiency for O-atom transfer is seen to decrease as the energy required to promote an electron to make two non-f electrons available for bonding increases. The periodic trend in reaction efficiency along the lanthanide series matches the periodic trend in the electron-promotion energy required to achieve a d1s1 or d2 excited electronic configuration in the lanthanide cation, and also the periodic trends across the lanthanide row reported previously for several alcohols and phenol. An Arrhenius-like correlation is also observed for the dependence of D2O reactivity on promotion energy for early lanthanide cations, and exhibits a characteristic temperature of 2600 K.  相似文献   

8.
The adsorption of atomic oxygen and nitrogen on the beta-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed throughout the study. Several adsorption minima and diffusion transition states have been characterized for the two lowest spin states of both systems. A strong chemisorption is found for either O or N in several sites with both slab endings (e.g., it is found an average adsorption energy of 5.89 eV for O (singlet state) and 4.12 eV for N (doublet state) over the Si face). The approach of O or N on top O gives place to the O2 and NO abstraction reactions without energy barriers. Atomic sticking coefficients and desorption rate constants have been estimated (300-1900 K) by using the standard transition state theory. The high adsorption energies found for O and N over silica point out that the atomic recombination processes (i.e., Eley-Rideal and Langmuir-Hinshelwood mechanisms) will play a more important role in the atomic detachment processes than the thermal desorption processes. Furthermore, the different behavior observed for the O and N thermal desorption processes suggests that the published kinetic models for atomic O and N recombination reactions on SiO2 surfaces, based on low adsorption energies (e.g., 3.5 eV for both O and N), should probably be revised.  相似文献   

9.
Highly efficient electron stimulated desorption of O+ from gadolinia-doped ceria (GDC) surfaces annealed at 850 K in ultrahigh vacuum is observed and investigated. O+ desorption has a major threshold of approximately 40 eV and an intrinsic kinetic energy of approximately 5.6 eV. Since the threshold energy is close to Ce 5s and Gd 5s core levels, Auger decay of core holes is likely associated with O+ desorption from sites related to oxygen vacancies. The interactions of water and molecular oxygen with GDC surfaces result in a decrease in O+ desorption, suggesting that water and oxygen molecules adsorb mainly to oxygen vacancies. The dependence of O+ kinetic energies on the incident electron energy and temperature reveals surface charging as a result of electron trapping, hole trapping, and electron-hole recombination. The activation energy for surface charge dissipation is found to be 0.43 eV, close to the activation energy for ionic conduction (0.47 to 0.6 eV) in the same material.  相似文献   

10.
The 4th positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr(3) vapor in an excess of O atoms. O atoms were produced by dissociation of N(2)O (or O(2)) in a cw-microwave discharge cavity in 2.0 Torr of He at 298 K. The CO emission intensity in these bands showed a quadratic dependence on the laser fluence employed. Temporal profiles of the CO(A) and other excited-state products that formed in the photoproduced precursor + O-atom reactions were measured by recording their time-resolved chemiluminescence in discrete vibronic bands. The CO 4th positive transition (A(1)Pi, v' = 0 --> X(1)Sigma(+), v' ' = 2) near 165.7 nm was monitored in this work to deduce the pseudo-first-order decay kinetics of the CO(A) chemiluminescence in the presence of various added substrates (CH(4), NO, N(2)O, H(2), and O(2)). From this, the second-order rate coefficient values were determined for reactions of these substrates with the photoproduced precursors. The measured reactivity trends suggest that the prominent precursors responsible for the CO(A) chemiluminescence are the methylidyne radicals, CH(X(2)Pi) and CH(a(4)Sigma(-)), whose production requires the absorption of at least 2 laser photons by the photolysis mixture. The O-atom reactions with brominated precursors (CBr, CHBr, and CBr(2)), which also form in the photolysis, are shown to play a minor role in the production of the CO(A or a) chemiluminescence. However, the CBr(2) + O-atom reaction was identified as a significant source for the 289.9-nm Br(2) chemiluminescence that was also observed in this work. The 282.2-nm OH and the 336.2-nm NH chemiluminescences were also monitored to deduce the kinetics of CH(X(2)Pi) and CH(a(4)Sigma(-)) reactions when excess O(2) and NO were present.  相似文献   

11.
The interaction of atomic and molecular hydrogen with the Ag(111) surface is studied using periodic density functional total-energy calculations. This paper focuses on the site preference for adsorption, ordered structures, and energy barriers for H diffusion and H recombination. Chemisorbed H atoms are unstable with respect to the H(2) molecule in all adsorption sites below monolayer coverage. The three-hollow sites are energetically the most favorable for H chemisorption. The binding energy of H to the surface decreases slightly up to one monolayer, suggesting a small repulsive H-H interaction on nonadjacent sites. Subsurface and vacancy sites are energetically less favorable for H adsorption than on-top sites. Recombination of chemisorbed H atoms leads to the formation of gas-phase H(2) with no molecular chemisorbed state. Recombination is an exothermic process and occurs on the bridge site with a pronounced energy barrier. This energy barrier is significantly higher than that inferred from experimental temperature-programmed desorption (TPD) studies. However, there is significant permeability of H atoms through the recombination energy barrier at low temperatures, thus increasing the rate constant for H(2) desorption due to quantum tunneling effects, and improving the agreement between experiment and theory.  相似文献   

12.
The spatial ordering of aluminum atoms in CsAl(SiO3)2 and 3Al2O3.2SiO2 was probed by 27Al dipolar solid-state NMR spectroscopy. The 27Al response to a Hahn spin-echo pulse sequence in a series of aluminum-containing model crystalline compounds demonstrates that quantitative 27Al homonuclear dipolar second moments can be obtained to within +/-20% of the theoretical values, if evaluation of the spin-echo response curve is limited to short evolution periods (2t1 < or = 0.10 ms). Additionally, selective excitation of the central transition m = 1/2 --> -1/2 is necessary in order to ensure quantitative results. Restriction of spin exchange affecting the dephasing of the magnetization may decelerate the spin-echo decay at longer evolution periods. Considering these restraints, the method was used to probe the spatial distribution of aluminum atoms among the tetrahedral sites in two aluminosilicate materials. Experimental 27Al spin-echo response data for the aluminosilicates CsAl(SiO3)2 (synthetic pollucite) and 3Al2O3.2SiO2 (mullite) are compared with theoretical data based on (I) various degrees of aluminum-oxygen-aluminum bond formation among tetrahedrally coordinated aluminum atoms (Al(T(d) )-O-Al(T(d) )) and (II) the maximum avoidance of Al(T(d) )-O-Al(T(d) ) bonding. Analysis of the second moment values and resulting echo decay responses suggests that partial suppression of spin exchange among aluminum atoms in crystallographically distinct sites may contribute to the 27Al spin echo decay in 3Al2O3.2SiO2, thus complicating quantitative analysis of the data. Silicon-29 and aluminum-27 magic angle spinning (MAS) NMR spectra of 3Al2O3.2SiO2 are consistent with those previously reported. The experimental 27Al spin-echo response behavior of CsAl(SiO3)2 differs from the theoretical response behavior based on the maximum avoidance of Al-O-Al bonding between tetrahedral aluminum sites in CsAl(SiO3)2. A single unresolved resonance is observed in both the silicon-29 and aluminum-27 MAS spectra of CsAl(SiO3)2.  相似文献   

13.
The adsorption of H/D atoms on the graphite (0001) surface is investigated by means of both high-resolution electron-energy loss spectroscopy (HREELS) and periodic first-principle density-functional theory. The two methods converge towards two modes of adsorption: adsorption in clusters of about four hydrogen atoms and adsorption in pairs of atoms on contiguous carbon sites. The desorption energies estimated from the calculated dissociation energies range from 8 to 185 kJ mol(-1) leading to an estimated surface coverage at saturations of 30-44 at. %. These results are compared with previous thermal desorption spectroscopy results. New HREEL signal assignments are proposed based on quantum calculations.  相似文献   

14.
Interaction of N2O at low temperatures (473-603 K) with Fe-ZSM-5 zeolites (Fe, 0.01-2.1 wt %) activated by steaming and/or thermal treatment in He at 1323 K was studied by the transient response method and temperature-programmed desorption (TPD). Diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) of NO adsorbed at room temperature as a probe molecule indicated heterogeneity of surface Fe(II) sites. The most intensive bands were found at 1878 and 1891 cm(-1), characteristic of two types mononitrosyl species assigned to Fe2+(NO) involved in bi- and oligonuclear species. Fast loading of atomic oxygen from N2O on the surface and slower formation of adsorbed NO species were observed. The initial rate of adsorbed NO formation was linearly dependent on the concentration of active Fe sites assigned to bi- and oligonuclear species, evolving oxygen in the TPD at around 630-670 K. The maximal coverage of a zeolite surface by NO was estimated from the TPD of NO at approximately 700 K. This allowed the simulation of the dynamics of the adsorbed NO formation at 523 K, which was consistent with the experiments. The adsorbed NO facilitated the atomic oxygen recombination/desorption, the rate determining step during N2O decomposition to O2 and N2, taking place at temperatures > or =563 K.  相似文献   

15.
We present differential angular cross sections for O(3P) + Ar(1S) scattering at collision energies near 90 kcal mol(-1) (approximately 8 km s(-1) relative velocity) from molecular beam measurements and high-level theoretical calculations. Beams of hyperthermal O(3P) are now being used to investigate novel gas-phase and gas-surface chemistries, and the comparison of theory and measurements on this simple system will be a stringent test of the experimental methodology. Potential energy curves were generated for O(3P) + Ar(1S) using a large cc-pVQZ basis within a valence multi-configuration plus perturbation theory treatment. These curves were then used in quantum scattering calculations to generate differential cross sections. Agreement between experiment and theory is excellent. In addition to these comparisons, the cross sections were used in direct simulation Monte Carlo calculations to investigate effects of increasing the Ar flux above the "single-collision" regime. As the Ar flux increases, the observed differential angular cross sections change in two ways. In addition to the main "single-scatter" peak along the incident O-atom beam direction, a secondary O-atom peak appears in the direction of the incident Ar beam, and the multiple-scattered O-atom translational energy starts to reflect the energy of the relatively slow moving Ar beam.  相似文献   

16.
We have investigated the photocatalysis of partially deuterated methanol (CD(3)OH) and H(2)O on TiO(2)(110) at 400 nm using a newly developed photocatalysis apparatus in combination with theoretical calculations. Photocatalyzed products, CD(2)O on Ti(5c) sites, and H and D atoms on bridge-bonded oxygen (BBO) sites from CD(3)OH have been clearly detected, while no evidence of H(2)O photocatalysis was found. The experimental results show that dissociation of CD(3)OH on TiO(2)(110) occurs in a stepwise manner in which the O-H dissociation proceeds first and is then followed by C-D dissociation. Theoretical calculations indicate that the high reverse barrier to C-D recombination and the facile desorption of CD(2)O make photocatalytic methanol dissociation on TiO(2)(110) proceed efficiently. Theoretical results also reveal that the reverse reactions, i.e, O-H recombination after H(2)O photocatalytic dissociation on TiO(2)(110), may occur easily, thus inhibiting efficient photocatalytic water splitting.  相似文献   

17.
The reaction of NH(3) on the surface of the 011-faceted structure of the TiO(2)(001) single crystal is studied and compared to that on the O-defected surface. Temperature-programmed desorption (TPD) conducted after NH(3) adsorption at 300 K shows only molecular desorption at 340 K. Modeling of TPD signals as a function of surface coverage indicated that the activation energy, E(d), and pre-exponential factor, v(eff), decrease with increasing coverage. Near zero surface coverage, E(d) was found to be equal to 92 kJ/mol and v(eff) to be close to 10(13) /s. Both parameters decreased to approximately 52 kJ/mol and approximately 10(7) /s at saturation coverage. The decrease is due to a repulsive interaction of adsorbed NH(3) molecules on the surface. Computing of the TPD results show that saturation is obtained at 1/2 monolayer coverage (referred to Ti atoms). Both the amount and shape of NH(3) peak change on the reduced (Ar(+)-sputtered) surfaces. The desorption peak at 340 K is considerably attenuated on mildly reduced surfaces (TiO( approximately )(1.9)) and has totally disappeared on the heavily reduced surfaces (TiO(1.6)(-)(1.7)), where the main desorption peak is found at 440 K. This 440-K desorption is most likely due to NH(x) + H recombination resulting from ammonia dissociation upon adsorption on Ti atoms in low oxidation states.  相似文献   

18.
Transient response and temperature-programmed desorption/reaction (TPD/TPR) methods were used to study the formation of adsorbed NO(x) from N2O and its effect during N2O decomposition to O2 and N2 over FeZSM-5 catalysts at temperatures below 653 K. The reaction proceeds via the atomic oxygen (O)(Fe) loading from N2O on extraframework active Fe(II) sites followed by its recombination/desorption as the rate-limiting step. The slow formation of surface NO(x,ads) species was observed from N2O catalyzing the N2O decomposition. This autocatalytic effect was assigned to the formation of NO(2,ads) species from NO(ads) and (O)(Fe) leading to facilitation of (O)(Fe) recombination/desorption. Mononitrosyl Fe2+(NO) and nitro (NO(2,ads)) species were found by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) in situ at 603 K when N2O was introduced into NO-containing flow passing through the catalyst. The presence of NO(x,ads) does not inhibit the surface oxygen loading from N2O at 523 K as observed by transient response. However, the reactivity of (O)(Fe) toward CO oxidation at low temperatures (<523 K) is drastically diminished. Surface NO(x) species probably block the sites necessary for CO activation, which are in the vicinity of the loaded atomic oxygen.  相似文献   

19.
We present an experimental and theoretical investigation of the adsorption, desorption, and dissociation of NO on the stepped Pt (533) surface. By combining temperature programmed desorption and reflection absorption infrared spectroscopy, information about the adsorption sites at different temperatures is obtained. Surprisingly, metastable adsorption structures of NO can be produced through variation of the dosing temperature. We also show that part of the NO molecules adsorbed on the step sites dissociates around 450 K. After dissociation the N atoms can desorb either by combining with an O fragment, or with another N atom, resulting in NO and N(2). The N(2) production can be enhanced by coadsorbing CO on the surface: CO scavenges the oxygen atom, thereby suppressing associative recombinative desorption of N and O atoms. Density functional theory calculations are used to reveal the adsorption energies and vibrational frequencies of adsorbed NO as well as barriers for dissociation of NO and for diffusion of N atoms. The combined experimental results and theoretical calculations reveal that dissociation of NO is the rate limiting step in the formation of N(2).  相似文献   

20.
The reflected shock tube technique with multipass absorption spectrometric detection of OH-radicals at 308 nm, corresponding to a total path length of approximately 2.8 m, has been used to study the reaction CH3 + O2 CH2O + OH. Experiments were performed between 1303 and 2272 K, using ppm quantities of CH3I (methyl source) and 5-10% O2, diluted with Kr as the bath gas at test pressures less than 1 atm. We have also reanalyzed our earlier ARAS measurements for the atomic channel (CH3 + O2 --> CH3O + O) and have compared both these results with other earlier studies to derive a rate expression of the Arrhenius form. The derived expressions, in units of cm3 molecule(-1) s(-1), are k = 3.11 x 10(-13) exp(-4953 K/T) over the T-range 1237-2430 K, for the OH-channel, and k = 1.253 x 10(-11) exp(-14241 K/T) over the T-range 1250-2430 K, for the O-atom channel. Since CH2O is a major product in both reactions, reliable rates for the reaction CH2O + O2 --> HCO + HO2 could be derived from [OH]t and [O]t experiments over the T-range 1587-2109 K. The combined linear least-squares fit result, k = 1.34 x 10(-8) exp(-26883 K/T) cm3 molecule(-1) s(-1), and a recent VTST calculation clearly overlap within the uncertainties in both studies. Finally, a high sensitivity for the reaction OH + O2 --> HO2 + O was noted at high temperature in the O-atom data set simulations. The values for this obtained by fitting the O-atom data sets at later times (approximately 1.2 ms) again follow the Arrhenius form, k = 2.56 x 10(-10) exp(-24145 K/T) cm3 molecule(-1) s(-1), over the T-range, 1950-2100 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号