首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.

In this work, the bioenergy potential of green microalgae Scenedesmus acuminatus was evaluated through the psychochemical characteristics and kinetic study of pyrolysis, where the results indicate a good candidate for application in the thermochemical process due to its low moisture and ash content and high calorific value. Its thermal behavior under a heating rate of 10 °C min?1 and inert atmosphere shows that decomposition occurs in two stages. Stage I (125–309 °C) involves the pyrolysis of carbohydrates and protein and stage II (309–501 °C) the pyrolysis of lipids. The Starink isoconversional method showed a better application for simulation curves, compared with methods of FWO and KAS. The average values of activated energy were 107.1 and 132.6 kJ mol?1 for stages I and II, respectively, which indicates that pyrolysis occurs more easily in stage I than in stage II. The conversion rate curves show that the calculated kinetic parameters are satisfactory for the evaluation of the thermochemical systems.

  相似文献   

2.
In this study, an energetic binder is synthesized via ring opening copolymerization of ε‐caprolactone with poly (glycidyl nitrate) (PGN) of low molecular weight (Mn = 1350 g mol?1) as a macroinitiator to form triblock copolymer polycaprolactone‐PGN‐polycaprolactone (PCL‐PGN‐PCL) (Mn = 4128 g mol?1). The effects of catalyst type and its concentration, reaction time, and solvent are investigated in this polymerization reaction. The resulting triblock copolymer is characterized by Fourier transform infrared spectroscopy (FT‐IR), nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The DSC result shows that the glass transition temperature of triblock copolymer (Tg = ?50°C) is lower than PGN (Tg = ?35°C). Also, the decomposition kinetics of this energetic binder is studied by DSC, TGA, and its derivative (DTG). An advanced isoconversional method is applied for kinetic analysis. Activation energy is calculated by Flynn‐Wall‐Ozawa (FWO) and Kissinger methods. The resulting activation energy from Kissinger method for the first and the second steps are 42.98 and 74.56 kJ mol?1, respectively. Also, it is found from FWO results that the activation energy for the copolymer increases with degradation degree (α).  相似文献   

3.

Pyridine-derived platinum(II) complexes with the general formula [PtCl2L2] (L1: 3,5-dimethylpyridine, L2: 2-amino-5-bromopyridine, L3: 4-(4-nitrobenzyl)pyridine) were synthesized. Characterization of the synthesized complexes was made via FT-IR, UV–Vis, 1H-NMR and 13C-NMR techniques. While the thermal behavior of the complexes was investigated via DTA/TG combined system, their kinetic parameters were investigated by using Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) methods. The activation energy of the decomposition kinetics of the complexes was calculated to be 196.5–31.7 kJ mol?1 for FWO and 203.4–29.2 kJ mol?1 for KAS. The cytotoxic effect of the complexes against the colon cancer cell line (DLD-1), which is one of the most common types of cancer observed both in humans and animals, was investigated. The complexes showed high cytotoxicity on DLD-1. In particular, [PtCl2L 12 ] complex was found to be the most effective compounds against colon cancer cell line during the 24 h incubation period. According to these results, the pyridine-derived platinum(II) complexes would contribute to oncologic treatment as chemotherapeutic agents.

  相似文献   

4.

Pyrolysis is a commonly used method for the recovery of used lubricating oil (ULO), which should be kinetically improved by a catalyst, due to its high level of energy consumption. In this research, the catalytic effects of carbon nanotube (CNT) and graphene nanoplatelets on the pyrolysis of ULO were studied through thermogravimetric analysis. First, the kinetic parameters of ULO pyrolysis including activation energy were calculated to be 170.12 and 167.01 kJ mol?1 by FWO and KAS methods, respectively. Then, the catalytic effects of CNT and graphene nanoplatelets on pyrolysis kinetics were studied. While CNT had a negligible effect on the pyrolysis process, graphene nanoplatelets significantly reduced the temperature of maximum conversion during pyrolysis from 400 to 350 °C, due to high thermal conductivity and homogenous heat transfer in the pyrolysis process. On the other hand, graphene nanoplatelets maximized the rate of conversion of highly volatile components at lower temperatures (<?100 °C), which was mainly due to the high affinity of these components toward graphene nanoplatelets and also the effect of nanoplatelets’ edges which have free tails and can bond with other molecules. Moreover, graphene nanoplatelets decreased the activation energy of the conversion to 154.48 and 152.13 kJ mol?1 by FWO and KAS methods, respectively.

  相似文献   

5.
《印度化学会志》2023,100(2):100918
This study aims at investigating pyrolysis kinetics of untreated and alkali-treated Crotalaria juncea (sunnhemp) fiber by widely used model fitting Coats-Redfern method using TGA data. A kinetics study of thermal decomposition has been done for both untreated and treated fiber with the help of TGA using a single heating rate of 10 °C/min. This analysis shows that treated sunnhemp fibers have variable activation energy based on the different models chosen. The estimated activation energy is in the range of 30.0–76.6 kJ mol?1 for the untreated sample & for the treated sample it is in the range of 34.58–67.12 kJ mol?1. Here the two phases have been selected as per temperature ranges in which inherent component decomposes during pyrolysis. In each phase, kinetics and thermodynamic parameters (ΔS, ΔH & ΔG) are also estimated. FTIR study of both samples confirms the concentration change of elements present in fiber due to the chemical treatment performed.  相似文献   

6.
The kinetics and mechanism of formation of gehlenite, Al–Si spinel phase, wollastonite and anorthite from the mixture of kaolinite and calcite was investigated by differential thermal analysis under the heating rate from 283 to 293 K min−1 using Kissinger equation. The changes in the phase composition of the sample during the thermal treatment were investigated via simultaneous TG-DTA, in situ high-temperature x-ray diffraction analysis and high-temperature heating-microscopy. The crystallizations of gehlenite and Al–Si spinel phase show apparent activation energy of (411 ± 5) kJ mol−1 and (550 ± 9) kJ mol−1, respectively. The value of kinetic exponent corresponds to the process limited by the decreasing nucleation rate for gehlenite while constant nucleation rate is determined for Al–Si spinel phase. Anorthite crystallizes from the eutectic melt and the process shows the apparent activation energy of (1140 ± 25) kJ mol−1. The process is limited by the constant nucleation rate of a new phase.  相似文献   

7.
This paper describes the thermal investigations and kinetic analysis regarding the solid-state degradation of three compounds used as mental disorder therapeutic agents (antidepressants), namely amitriptyline, desipramine and imipramine. The study was carried according to ICTAC 2000 recommendations, by using three isoconversional methods, namely Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Friedman. The differential method of Friedman indicated multistep degradation, which was later confirmed by the nonparametric kinetic method (NPK). NPK method showed that all three tricyclic antidepressants are degraded by two processes. In terms of apparent activation energies for decomposition, the NPK method indicated 123.4 kJ mol?1 for imipramine, 112.3 kJ mol?1 for desipramine and 82.9 kJ mol?1 for amitriptyline, and the results are in good agreement with the ones suggested by isoconversional methods.  相似文献   

8.
The kinetics of sublimation of bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II), [Cu(tmhd)2] was studied by non-isothermal and isothermal thermogravimetric (TG) methods. The non-isothermal sublimation activation energy values determined following the procedures of Friedman, Kissinger, and Flynn–Wall methods yielded 93 ± 5, 67 ± 2, and 73 ± 4 kJ mol−1, respectively and the isothermal sublimation activation energy was found to be 97 ± 3 kJ mol−1 over the temperature range of 375–435 K. The dynamic TG run proved the complex to be completely volatile and the equilibrium vapor pressure (pe)T of the complex over the temperature range of 375–435 K determined by a TG-based transpiration technique, yielded a value of 96 ± 2 kJ mol−1 for its standard enthalpy of sublimation (ΔsubH°).  相似文献   

9.

A new nitrogen-rich energetic salt of bis-1-methylimidazole 1H,1′H-5,5′-bistetrazole-1,1′-diolate salt, (1-M)2BTO, was synthesized and characterized (FT-IR, 1H NMR, 13C NMR, elemental analysis, and X-ray single-crystal diffraction). Results indicated that (1-M)2BTO crystallizes in the triclinic space group P-1. The thermal decomposition behavior of (1-M)2BTO was determined by differential scanning calorimetry (DSC) and thermogravimetric tandem infrared spectroscopy. The decomposition peak temperature of (1-M)2BTO was 530 K, which suggested that the salt is strong heat resistance. The apparent activation energies were 130.56 kJ mol?1 (Kissinger’s method) and 132.50 kJ mol?1 (Ozawa’s method), respectively. The enthalpy of formation for the salt was calculated as 917.3 kJ mol?1. The detonation velocity and detonation pressure of (1-M)2BTO were 7448 m s?1 and 20.7 GPa, respectively, using the Kamlet-Jacobs equation. Furthermore, the sensitivity test results showed that its impact sensitivity is greater than 50 J and friction sensitivity is 180 N, indicating that it has a lower sensitivity.

  相似文献   

10.
Smili  B.  Abadlia  L.  Bouchelaghem  W.  Fazel  N.  Kaban  I.  Gasser  F.  Gasser  J. G. 《Journal of Thermal Analysis and Calorimetry》2019,136(3):1053-1067

In this paper, the electronic transport properties of as-spun Zr66.7Ni33.3 alloys were studied in detail by a combination of electrical resistivity and absolute thermoelectric power measurements over a temperature range from 25 up to 400 °C. Moreover, the isochronal and isothermal crystallization kinetics of Zr66.7Ni33.3 glassy alloy has been investigated based on the electrical resistivity measurements. The comparative study of the crystallization kinetics of these binary amorphous alloys was carried out, for the first time to our knowledge, using an accurate method for electrical resistivity measurements. In the isochronal heating process, the apparent activation energy for crystallization was determined to be, respectively, 371.4 kJ mol−1 and 382.2 kJ mol−1, by means of Kissinger and Ozawa methods. The Johnson–Mehl–Avrami model was used to describe the isothermal transformation kinetics, and the local Avrami exponent has been determined in the range from 2.97 to 3.23 with an average value of 3.1, implying a mainly diffusion-controlled three-dimensional growth with an increasing nucleation rate. Based on an Arrhenius relationship, the local activation energy was analyzed, which yields an average value Ex = 376.2 kJ mol−1.

  相似文献   

11.
The effect of the mixture of two antioxidants has been evaluated on the thermal-oxidant degradation of the hydroxyl-terminated polybutadiene (HTPB) because of its importance in the coatings and adhesives industries. 2,2-Methylene bis(4-methyl-6-tertiarybutylphenol) or A.O.2246 and 3-hydroxy pyridine have been considered as antioxidants in this study as a common HTPB antioxidant and an active antioxidant, respectively. The thermal-oxidant degradation behavior of the HTPB has been investigated in the presence of a mixture of two antioxidants by TGA and DTG tests, and, subsequently, the results of these tests have been interpreted by two model-free methods, e.g., Kissinger–Akahira–Sunose and Friedman methods. The results revealed that the mixture of two antioxidants affected the activation energy of the thermal-oxidant degradation reaction of the HTPB. The calculated activation energy value obtained from the Kissinger–Akahira–Sunose method was about 199 ± 1 kJ⋅mol−1. In addition, the Ea value at various conversion rates has also been calculated by using the Friedman method. This method showed that the highest Ea value in the thermal-oxidant degradation reaction belonged to the initiation step of the reaction (about 299 kJ⋅mol−1). Moreover, the lowest activation energy value was correlated to the second step of the degradation reaction at a conversion rate of 0.6 (about 184 kJ⋅mol−1).  相似文献   

12.
Remazol brilliant blue R dye (RBBR) brings toxicity to living organisms once it enters the environment. This study utilized response surface methodology (RSM) and Polymath software for optimization and mass transfer simulation purposes, respectively. RSM revealed that the optimum preparation conditions of meranti wood-based activated carbon (MWAC) were 441 W, 5.76 min, and 1.35 g/g for radiation power, radiation time, and KOH:char impregnation ratio (IR), respectively, which translated into 86.39 mg/g of RBBR uptakes and 31.94 % of MWAC’s yield. The simulation study predicted the mass transfer rate, rm to be 112.20 to 1007.50 s?1 and the adsorption rate, k1 to be 3.96 to 4.34 h?1. The developed model predicted the adsorption surface area, am to be 790.04 m2/g and this value is highly accurate as compared to the actual mesopores surface area of 825.58 m2/g. Mechanism analysis divulged that the interaction that occurred between RBBR molecules and MWAC’s surface were hydrogen bond (methylene and alkyne), dipole–dipole force (alkyl carbonate, terminal alkyne, and methoxy), and ion–dipole force (primary amine). The isotherm and kinetic studies found that the adsorption data obeyed the Freundlich model and pseudo-first-order (PFO) model the best, respectively. The Langmuir maximum adsorption capacity, Qm was computed to be 327.33 mg/g. Thermodynamic parameters were calculated to be ?4.06 kJ mol?1, 0.06 kJ mol?1 K?1, –22.69 kJ mol?1, and 16.03 kJ mol?1 for ΔH°, ΔS°, ΔG°, and Ea, respectively, which signified the adsorption process studied was exothermic, spontaneous and governed by physisorption.  相似文献   

13.

Isothermal and dynamic differential scanning calorimetry (DSC) was exploited to study the curing behavior of diglycidyl ether bisphenol-A epoxy resin with various combining ratios of dicyandiamide (DICY) and nadic methyl anhydride (NMA). Curves of prepared samples indicated that the enthalpy of the reaction decreased with increasing the molar ratios (NMA/DICY) up to 40% after which an exothermic peak peculiar to the effect of anhydride appeared at a higher temperature. The curing behavior examination of the samples containing the aforementioned molar ratio of NMA/DICY (= 40%) was carried out using isothermal condition at different temperatures (130–145 °C) and dynamic condition DSC at various heating rates (2.5–20 °C min−1). Under the isothermal condition, by constructing a master curve, the values of activation energy (Ea) and pre-exponential factor (A) were calculated 89.3 kJ mol−1 and 1.2 × 10+9 s−1, respectively. The activation energy of the curing reactions in a dynamic mode was obtained 85.32 kJ mol−1 and 88.02 kJ mol−1 using Kissinger and Ozawa methods, respectively. Likewise, pre-exponential factors were also calculated 3.35 × 10+8 and 7.4 × 10 +8 s−1, respectively. The overall order of reaction for both conditions was found to be a value around 3.

  相似文献   

14.
High volatile matter contents in the feedstock could promote the development of porous structures and the reactivity of biochar. Herein, tobacco midrib with high volatile matter contents was used to prepare biochar by a dual-templating approach with mild activators (K2C2O4·H2O, CaCO3). The characterizations of textural properties indicated that tobacco midrib-based biochar possessed numerous meso-, micro-, and macro-pores, specific surface area reached 1841.9 m2 g?1. As a dye adsorbent, the adsorption capacity of this biochar towards Rhodamine B reached 588.7 mg g?1. After recycling 5 times, it still retained over 90% of its initial adsorption capacity. Moreover, thermodynamic parameters assessed with full vańt Hoff equation confirmed that dye molecules replace water molecules connected on biochar surface during the adsorption according to negative heat capacity change (-3.9 kJ mol?1 K?1), ΔH0 (–22.1 kJ mol?1) and ΔS0 (0.3 kJ mol?1) revealed that the adsorption process of Rh B by TMB was exothermic and the disorder of the solid–liquid interface increased. Overall, this research provides a mild and effective approach to modifying biochar from special tissue of agriculture waste and an insight into the process of dye adsorption on biochar from thermodynamics.  相似文献   

15.
O’Kennedy  S. J.  de Villiers  A.  Brand  D. J.  Gerber  W. J. 《Structural chemistry》2018,29(5):1551-1564

Two procyanidin B2 conformers were identified in a relative abundance ratio of approximately 3:1 at 298 K by 1H NMR experiments in acetonitrile. The conformational interchange reactions between these two conformers are 1st order in both reactions, with ?G? for forward and reverse of 57.12?±?5.62 and 54.56?±?5.48 kJ mol?1, respectively. The experimentally obtained standard thermodynamic energies for this reaction are ΔH0rxn (3.67?±?0.22 kJ mol?1), ΔS0rxn (4.05?±?1.57 kJ mol?1 K?1), and ΔH0rxn (2.96?±?0.33 kJ.mol?1). Conformational search results at the DFT (PBE, PBE-D2, and B3LYP with 6-311++g**) level of theory yielded four novel conformations, named fully compact (FC), partially compact (PC), partially extended (PE), and fully extended (FE). Although the FC conformer is electronically the most stable of the four as a result of extensive intramolecular non-covalent interactions, the PC and FE conformers are thermodynamically favored in a 5:1 ratio (B3LYP), with the FC and PE conformers present in negligible amounts at equilibrium. The DFT computed standard reaction energies using the B3LYP functional for the PCmajor to FEminor conformational interchange reaction compare exceptionally well with experimental data at 298 K: ?G0rxn (3.86 kJ mol?1), ΔH0rxn (5.34 kJ mol?1), and ?S0rxn (4.97 kJ mol?1 K?1). It was found that inclusion of solvation energies is crucial to obtain accurate thermodynamic energies. The secondary equilibria found in chromatographic separations are predicted to be highly dependent on solvent polarity and temperature. Similar conformational diversity and hierarchies should exist for all non-rigid procyanidin oligomers and the unique chromatographic behavior of these compounds may be a result of conformational interchange.

  相似文献   

16.
Thermal cracking of waste cooking oil (WCO) for production of liquid fuel has gained special interest due to the growing demand of renewable fuel, depleting fossil fuel reserves and environmental issues. In the present work, thermal cracking of WCO to produce liquid hydrocarbon fuels without any preprocessing has been studied. Moreover, non-isothermal kinetics of WCO using thermogravimetric analysis (TGA) has been studied under an inert atmosphere at various heating rates. According to TGA result, active thermal decomposition of WCO was found to be between 318 and 500 °C. Furthermore, the temperature at which the maximum mass loss rate attained was shifted to higher values as the heating rates increased from 10 to 50 °C min?1 and the values were found to be approximately similar to that of R 50. Besides, model-free iso-conversion kinetic methods such as Friedman (FM), Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) were used to determine the activation energies of WCO degradation. The average activation energy for the thermal degradation of WCO was found to be 243.7, 211.23 and 222 kJ mol?1 for FM, KAS and FWO kinetic methods, respectively. Additionally, the cracking of WCO was studied in a semi-batch reactor under an inert atmosphere and the influences of cracking temperature, time and heating rates on product distribution were investigated. From the reaction, an optimum yield of 72 mass% was obtained at a temperature of 475 °C, time of 180 min and a heating rate of 10 °C min?1. The physicochemical properties studied were in accordance with ASTM standards.  相似文献   

17.
Thermal characteristics of wheat distiller grains (WDGs) and steam gasification kinetics of the corresponding pyrolysis char were studied by thermogravimetric analysis. The pyrolysis process of WDGs can be divided into three stages including the drying, devolatilization, and carbonation. The heating rate and final temperature are the most important factors influencing the WDGs decomposition. The ultimate mass loss increases with increasing final temperature while the mass loss rate and the characteristic temperature for the maximum reaction rate increase with the increasing heating rate. For the pyrolysis of WDGs, the average activation energy was calculated as 77.45 kJ mol−1 by Coats–Refern method. While for the steam gasification of the pyrolysis char, the shrinking-core model fits the gasification behavior better than the volumetric reaction one and the activation energy, and the pre-exponential factor were calculated to be 199.19 kJ mol−1 and 7.21 × 106 s−1, respectively, with the former model.  相似文献   

18.
The kinetic parameters, namely the triplet activation energy EA, model function f(α) or g(α) and pre-exponential factor A of the oxidation of Constantan tapes in 1 atm of oxygen have been determined from both isothermal and non-isothermal thermogravimetry. For isothermal experiments, with temperatures ranging from 650 °C to 900 °C, the results from direct conversion of the weight increase as a function of the time and curve fitting, are compared with the isoconversion method. For the non-isothermal experiments, with heating rates from 1 °C/min to 20 °C/min, comparison is made between the Friedman differential method and the integral methods of Kissinger, Ozawa and Li and Tang. All methods give apparent activation energies with relative standard deviations as low as 3%. The results converge to the identification of three stages in the oxidation behaviour. A parabolic law for reaction extents α below 15% with EA = 246 ± 7 kJ mol−1, ln A = 14.3, is followed by two linear stages with EA = 244 ± 4 kJ mol−1 and ln A = 15.3 for 0.18 < α < 0.35 and EA = 228 ± 15 kJ mol−1, ln A ≈ 13 for α > 45%, respectively.  相似文献   

19.

The mechanism and kinetics of thermal degradation of materials developed from cellulose fiber and synergetic fire retardant or expandable graphite have been investigated using thermogravimetric analysis. The model-free methods such as Kissinger–Akahira–Sunose (KAS), Friedman, and Flynn–Wall–Ozawa (FWO) were applied to measure apparent activation energy (Eα). The increased Eα indicated a greater thermal stability because of the formation of a thermally stable char, and the decreased Eα after the increasing region related to the catalytic reaction of the fire retardants, which revealed that the pyrolysis of fire retardant-containing cellulosic materials through more complex and multi-step kinetics. The Friedman method can be considered as the best method to evaluate the Eα of fire-retarded cellulose thermal insulation compared with the KAS and FWO methods. A master-plots method such as the Criado method was used to determine the possible degradation mechanisms. The degradation of cellulose thermal insulation without a fire retardant is governed by a D3 diffusion process when the conversion value is below 0.6, but the materials containing synergetic fire retardant and expandable graphite fire retardant may have a complicated reaction mechanism that fits several proposed theoretical models in different conversion ranges. Gases released during the thermal degradation were identified by pyrolysis–gas chromatography/mass spectrometry. Fire retardants could catalyze the dehydration of cellulosic thermal insulating materials at a lower temperature and facilitate the generation of furfural and levoglucosenone, thus promoting the formation of char. These results provide useful information to understand the pyrolysis and fire retardancy mechanism of fire-retarded cellulose thermal insulation.

  相似文献   

20.
Acrylonitrile is a key industrial compound with numerous uses. Despite its importance, its enthalpy of formation is still contentious. There is a 12 kJ mol−1 range of values reported for the gas phase quantity: 173–185 kJ mol−1. Quantum chemical calculations, using current methodologies and defining reactions, suggest values between 185 and 191 kJ mol−1: the recommended value, an average, is 188 ± 7 kJ mol−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号