首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.  相似文献   

2.
We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a relativistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a nonlinear Schro dinger equation describing the dynamics of the EMWs and the Poisson-relativistic Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with localized EMWs.  相似文献   

3.
Weakly nonlinear interactions between wavepackets in lossless periodic dielectric media are studied based on the classical nonlinear Maxwell equations. We consider nonlinear processes such that: (i) the amplitude of the wave component due to the nonlinearity does not exceed the amplitude of its linear component; (ii) the spatial range of a probing wavepacket is much smaller than the dimension of the medium sample, and it is not too small compared with the dimension of the primitive cell. These nonlinear processes are naturally described in terms of the Bloch modes and the dispersion relations of the underlying linear periodic medium. It turns out that only a few triads of modes have significant nonlinear interactions. They are singled out by the frequency and phase matching conditions and, as we show, by an additional selection rule: the group velocity matching condition. The latter condition is the most important selection rule for the nonlinear regimes. We give a complete quantitative classification of all possible significant interactions for quadratic nonlinearities. The classification is based on a universal system of indices reflecting the intensity of nonlinear interactions. The obtained classification points to the second harmonic generation as being one of the stronger nonlinear interactions, and often the strongest one.  相似文献   

4.
Abstract

Weakly nonlinear interactions between wavepackets in lossless periodic dielectric media are studied based on the classical nonlinear Maxwell equations. We consider nonlinear processes such that: (i) the amplitude of the wave component due to the nonlinearity does not exceed the amplitude of its linear component; (ii) the spatial range of a probing wavepacket is much smaller than the dimension of the medium sample, and it is not too small compared with the dimension of the primitive cell. These nonlinear processes are naturally described in terms of the Bloch modes and the dispersion relations of the underlying linear periodic medium. It turns out that only a few triads of modes have significant nonlinear interactions. They are singled out by the frequency and phase matching conditions and, as we show, by an additional selection rule: the group velocity matching condition. The latter condition is the most important selection rule for the nonlinear regimes. We give a complete quantitative classification of all possible significant interactions for quadratic nonlinearities. The classification is based on a universal system of indices reflecting the intensity of nonlinear interactions. The obtained classification points to the second harmonic generation as being one of the stronger nonlinear interactions, and often the strongest one.  相似文献   

5.
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically, the solution is less tractable in more general cases involving multiple short waves. In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water. Specifically, this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves. Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train. From simulation results, we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train (expressed as wave train 2) leads to the energy focusing of the other short wave train (expressed as wave train 3). This mechanism occurs on wave components with a narrow frequency bandwidth, whose frequencies are near that of wave train 3.  相似文献   

6.
In this paper, we propose a square lattice model to study the nonlinear spin excitationsof an inhomogeneous helimagnet with bilinear, twist and anisotropic interactions in thesemi classical limit. The dynamics is found to be governed by a nonlinear partialdifferential equation (pde) in (2 +1) dimensions. The nonlinear excitations and the influence of differenttypes of interactions are investigated using a perturbation technique. The effect ofinhomogeneities in the system is demonstrated graphically in terms of solitonstability.  相似文献   

7.
We develop a consistent mathematical theory of weakly nonlinear periodic dielectric media for the dimensions one, two and three. The theory is based on the Maxwell equations with classical quadratic and cubic constitutive relations. In particular, we give a complete classification of different nonlinear interactions between Floquet-Bloch modes based on indices which measure the strength of the interactions. The indices take on a small number of prescribed values which are collected in a table. The theory rests on the asymptotic analysis of oscillatory integrals describing the nonlinear interactions.  相似文献   

8.
Abstract

Weakly nonlinear interactions between wavepackets in a lossless periodic dielectric medium are studied based on the classical Maxwell equations with a cubic nonlinearity. We consider nonlinear processes such that: (i) the amplitude of the wave component due to the nonlinearity does not exceed the amplitude of its linear component; (ii) the spatial range of a probing wavepacket is much smaller than the dimension of the medium sample, and it is not too small compared with the dimension of the primitive cell. These nonlinear processes are naturally described in terms of the cubic interaction phase function based on the dispersion relations of the underlying linear periodic medium. It turns out that only a few quadruplets of modes have significant nonlinear interactions. They are singled out by a system of selection rules including the group velocity, frequency and phase matching conditions. It turns out that the intrinsic symmetries of the cubic interaction phase stemming from assumed inversion symmetry of the dispersion relations play a significant role in the cubic nonlinear interactions. We also study canonical forms of the cubic interaction phase leading to a complete quantitative classification of all possible significant cubic interactions. The classification is ultimately based on a universal system of indices reflecting the intensity of nonlinear interactions.  相似文献   

9.
T Epstein  J Fineberg 《Pramana》2005,64(6):903-913
The nonlinear interactions of parametrically excited surface waves have been shown to yield a rich family of nonlinear states. When the system is driven by two commensurate frequencies, a variety of interesting superlattice type states are generated via a number of different 3-wave resonant interactions. These states occur either as symmetry-breaking bifurcations of hexagonal patterns composed of a single unstable mode or via nonlinear interactions between the two different unstable modes generated by the two forcing frequencies. Near the system’s bicritical point, a well-defined region of phase space exists in which a highly disordered state, both in space and time, is observed. We first show that this state results from the competition between two distinct nonlinear super-lattice states, each with different characteristic temporal and spatial symmetries. After characterizing the type of spatio-temporal disorder that is embodied in this disordered state, we will demonstrate that it can be controlled. Control to either of its neighboring nonlinear states is achieved by the application of a small-amplitude excitation at a third frequency, where the spatial symmetry of the selected pattern is determined by the temporal symmetry of the third frequency used. This technique can also excite rapid switching between different nonlinear states.  相似文献   

10.
Abstract

We develop a consistent mathematical theory of weakly nonlinear periodic dielectric media for the dimensions one, two and three. The theory is based on the Maxwell equations with classical quadratic and cubic constitutive relations. In particular, we give a complete classification of different nonlinear interactions between Floquet–Bloch modes based on indices which measure the strength of the interactions. The indices take on a small number of prescribed values which are collected in a table. The theory rests on the asymptotic analysis of oscillatory integrals describing the nonlinear interactions.  相似文献   

11.
洪涛  霍芸生  王育竹 《光学学报》2000,20(3):15-318
利用含时的Gross-Pitaevskii方程,研究了轴对称的高密度玻色爱因斯坦凝聚体在干涉过程中因原子间相互人用而产生的非线性现象。发现玻色爱因斯坦凝聚体的一维轴向干涉条纹的密度分布是一种驻波状结构。通过原子波之间非线性耦合相互作用,这种结构可以表现为物质波光栅,对其周期的原子波产生衍射现象。  相似文献   

12.
13.
We report the observation of low-light level optical interactions in a tapered optical nanofiber (TNF) embedded in a hot rubidium vapor. The small optical mode area plays a significant role in the optical properties of the hot vapor Rb-TNF system, allowing nonlinear optical interactions with nW level powers even in the presence of transit-time dephasing rates much larger than the intrinsic linewidth. We demonstrate nonlinear absorption and V-type electromagnetically induced transparency with cw powers below 10 nW, comparable to the best results in any Rb-optical waveguide system. The good performance and flexibility of the Rb-TNF system makes it a very promising candidate for ultralow power resonant nonlinear optical applications.  相似文献   

14.
We study the properties of the ground state of nonlinear Schrödinger equations with spatially inhomogeneous interactions and show that it experiences a strong localization on the spatial region where the interactions vanish. At the same time, tunneling to regions with positive values of the interactions is strongly suppressed by the nonlinear interactions and as the number of particles is increased it saturates in the region of finite interaction values. The chemical potential has a cutoff value in these systems and thus takes values on a finite interval. The applicability of the phenomenon to Bose-Einstein condensates is discussed in detail.  相似文献   

15.
Theoretically possible rogue edge wave are studied over cylindrical bottom in the framework of nonlinear shallow water equations in a weakly nonlinear limit. The nonlinear mechanisms (nonlinear dispersion enhancement, modulation instability and multimodal interactions) of possible anomalous edge wave appearance are analyzed.  相似文献   

16.
Gazizov  A. R.  Kharitonov  A. V.  Kharintsev  S. S. 《JETP Letters》2021,113(3):140-144
JETP Letters - Materials with a near-zero refractive index open up new possibilities for enhancing nonlinear optical interactions. This lowers the threshold for nonlinear generation, reduces the...  相似文献   

17.
We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the crossover from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.  相似文献   

18.
Pierre-Henri Chavanis 《Physica A》2011,390(9):1546-1574
We develop the kinetic theory of Brownian particles with long- and short-range interactions. Since the particles are in contact with a thermal bath fixing the temperature T, they are described by the canonical ensemble. We consider both overdamped and inertial models. In the overdamped limit, the evolution of the spatial density is governed by the generalized mean field Smoluchowski equation including a mean field potential due to long-range interactions and a generically nonlinear barotropic pressure due to short-range interactions. This equation describes various physical systems such as self-gravitating Brownian particles (Smoluchowski-Poisson system), bacterial populations experiencing chemotaxis (Keller-Segel model) and colloidal particles with capillary interactions. We also take into account the inertia of the particles and derive corresponding kinetic and hydrodynamic equations generalizing the usual Kramers, Jeans, Euler and Cattaneo equations. For each model, we provide the corresponding form of free energy and establish the H-theorem and the virial theorem. Finally, we show that the same hydrodynamic equations are obtained in the context of nonlinear mean field Fokker-Planck equations associated with generalized thermodynamics. However, in that case, the nonlinear pressure is due to the bias in the transition probabilities from one state to the other leading to non-Boltzmannian distributions while in the former case the distribution is Boltzmannian but the nonlinear pressure arises from the two-body correlation function induced by the short-range potential of interaction. As a whole, our paper develops connections between the topics of long-range interactions, short-range interactions, nonlinear mean field Fokker-Planck equations and generalized thermodynamics. It also justifies from a kinetic theory based on microscopic processes, the basic equations that were introduced phenomenologically to describe self-gravitating Brownian particles, chemotaxis and colloidal suspensions with attractive interactions.  相似文献   

19.
Using only linear interactions and a local parity measurement we show how entanglement can be detected between two harmonic oscillators. The scheme generalizes to measure both linear and nonlinear functionals of an arbitrary oscillator state. This leads to many applications including purity tests, eigenvalue estimation, entropy, and distance measures--all without the need for nonlinear interactions or complete state reconstruction. Remarkably, experimental realization of the proposed scheme is already within the reach of current technology with linear optics.  相似文献   

20.
Wavelength conversion in GaAs micro-ring resonators   总被引:2,自引:0,他引:2  
Tightly confined, low-loss waveguides in highly nonlinear materials permit nonlinear optical interactions to occur over much shorter distances than do fibers. The nonlinear interactions are further enhanced in resonators. Both theory and experiment of enhanced four-wave mixing in micro-ring resonators are presented that can be used for many applications. A conversion efficiency of 14% achievable with only 10-mW peak pump power is predicted under realizable conditions. The experiment, the first one to the authors' knowledge in nonlinear optics performed in micro-rings, shows, even in a lossy GaAs/AlGaAs ring, a 26-dB improvement in the conversion efficiency compared with that of an equivalent straight waveguide, in agreement with theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号