首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2010年   2篇
  2009年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2) leads to the energy focusing of the other short wave train(expressed as wave train 3).This mechanism occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.  相似文献   
2.
谢涛  邹光辉  WilliamPerrie  旷海兰  陈伟 《中国物理 B》2010,19(5):59201-059201
Using the theory of nonlinear interactions between long and short waves,a nonlinear fractal sea surface model is presented for a one dimensional deep sea.Numerical simulation results show that spectra intensity changes at different locations(in both the wave number domain and temporal-frequency domain),and the system obeys the energy conservation principle.Finally,a method to limit the fractal parameters is also presented to ensure that the model system does not become ill-posed.  相似文献   
3.
In recent years, linear fractal sea surface models have been developed for the sea surface in order to establish an electromagnetic backscattering model. Unfortunately, the sea surface is always nonlinear, particularly at high sea states. We present a nonlinear fractal sea surface model and derive an electromagnetic backscattering model. Using this model, we numerically calculate the normalized radar cross section (NRCS) of a nonlinear sea surface. Comparing the averaged NRCS between linear and nonlinear fractal models, we show that the NRCS of a linear fractal sea surface underestimates the NRCS of the real sea surface, especially for sea states with high fractal dimensions, and for dominant ocean surface gravity waves that are either very short or extremely long.  相似文献   
4.
谢涛  南撑峰  旷海兰  邹光辉  陈伟 《物理学报》2009,58(6):4011-4019
提出了一种计算反常波海面参数及色散关系的数值方法.将反常波海面看成变幅变频的波列,在各个具体时间、空间点用不同参数的延拓正弦波进行插值.在具体的时间、空间点处,根据海面及其一阶、二阶导数关系,求出相应的延拓正弦波各个参数.数值模拟出的振幅结果表明该方法有效,利用该方法计算的反常波海面参数进行海面重构的结果与原海面完全符合.比较非线性海面波数和角频率的关系式ω2/k与重力加速度g值,发现反常波海面的主要非线性色散区域不是位于反常波区域,而是位于 关键词: 反常波 非线性 色散  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号