首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

2.
Graphene oxide (GO) and silver nanoparticles (Ag NPs) sequentially decorated nitrogen‐doped titania nanotube array (N‐TiO2 NTA) had been designed as visible‐light‐driven self‐cleaning surface‐enhanced Raman scattering (SERS) substrate for a recyclable SERS detection application. N‐TiO2 NTA was fabricated by anodic oxidation and then doping nitrogen treatment in ammonia atmosphere, acting as a visible‐light‐driven photocatalyst and supporting substrate. Ag/GO/N‐TiO2 NTA was prepared by decorating GO monolayer through an impregnation process and then depositing Ag NPs through a polyol process on the surface of N‐TiO2 NTA, acting as the collection of organic molecule and Raman enhancement. The SERS activity of Ag/GO/N‐TiO2 NTA was evaluated using methyl blue as an organic probe molecule, revealing the analytical enhancement factor of 4.54 × 104. Ag/GO/N‐TiO2 NTA was applied as active SERS substrate to determine a low‐affinity organic pollutant of bisphenol A, revealing the detection limit of as low as 5 × 10?7 m . Ag/GO/N‐TiO2 NTA could also achieve self‐cleaning function for a recycling utilization through visible‐light‐driven photocatalytic degradation of the adsorbed organic molecules. Ag/GO/N‐TiO2 NTA has been successfully reused for five times without an obvious decay in accuracy and sensitivity for organic molecule detection. The unique properties of this SERS substrate enable it to have a promising application for the sensitive and recyclable SERS detection of low‐affinity organic molecules. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, in situ surface‐enhanced Raman scattering (SERS) decoding was demonstrated in microfluidic chips using novel thin micro gold shells modified with Raman tags. The micro gold shells were fabricated using electroless gold plating on PMMA beads with diameter of 15 μm. These shells were sophisticatedly optimized to produce the maximum SERS intensity, which minimized the exposure time for quick and safe decoding. The shell surfaces produced well‐defined SERS spectra even at an extremely short exposure time, 1 ms, for a single micro gold shell combined with Raman tags such as 2‐naphthalenethiol and benzenethiol. The consecutive SERS spectra from a variety of combinations of Raman tags were successfully acquired from the micro gold shells moving in 25 μm deep and 75 μm wide channels on a glass microfluidic chip. The proposed functionalized micro gold shells exhibited the potential of an on‐chip microfluidic SERS decoding strategy for micro suspension array.  相似文献   

4.
The synthesis of an innovative self‐propelled Janus nanomotor with a diameter of about 75 nm that can be used as a drug carrier is described. The Janus nanomotor is based on mesoporous silica nanoparticles (MSNs) with chromium/platinum metallic caps and propelled by decomposing hydrogen peroxide to generate oxygen as a driving force with speeds up to 20.2 μm s?1 (about 267 body lengths per second). The diffusion coefficient (D) of nanomotors with different H2O2 concentrations is calculated by tracking the movement of individual particles recorded by means of a self‐assembled fluorescence microscope and is significantly larger than free Brownian motion. The traction of a single Janus MSN nanomotor is estimated to be about 13.47×10?15 N. Finally, intracellular localization and drug release in vitro shows that the amount of Janus MSN nanomotors entering the cells is more than MSNs with same culture time and particle concentrations, meanwhile anticancer drug doxorubicin hydrochloride loaded in Janus MSNs can be slowly released by biodegradation of lipid bilayers in cells.  相似文献   

5.
It is highly demanding to design active nanomotors that can move in response to specific signals with controllable rate and direction. A catalysis‐driven nanomotor was constructed by designing catalytically and plasmonically active Janus gold nanoparticles (Au NPs), which generate an asymmetric temperature gradient of local solvent surrounding NPs in catalytic reactions. The self‐thermophoresis behavior of the Janus nanomotor is monitored from its inherent plasmonic response. The diffusion coefficient of the self‐thermophoresis motion is linearly dependent on chemical reaction rate, as described by a stochastic model.  相似文献   

6.
An ultrasensitive surface‐enhanced Raman spectroscopy (SERS) sensor based on rolling‐circle amplification (RCA)‐increased “hot‐spot” was developed for the detection of thrombin. The sensor contains a SERS gold nanoparticle@Raman label@SiO2 core‐shell nanoparticle probe in which the Raman reporter molecules are sandwiched between a gold nanoparticle core and a thin silica shell by a layer‐by‐layer method. Thrombin aptamer sequences were immobilized onto the magnetic beads (MBs) through hybridization with their complementary strand. In the presence of thrombin, the aptamer sequence was released; this allowed the remaining single‐stranded DNA (ssDNA) to act as primer and initiate in situ RCA reaction to produce long ssDNAs. Then, a large number of SERS probes were attached on the long ssDNA templates, causing thousands of SERS probes to be involved in each biomolecular recognition event. This SERS method achieved the detection of thrombin in the range from 1.0×10?12 to 1.0×10?8 M and a detection limit of 4.2×10?13 M , and showed good performance in real serum samples.  相似文献   

7.
Controlling the motion of artificial self‐propelled micro‐ and nanomotors independent of the fuel concentration is still a great challenge. Here we describe the first report of speed manipulation of supramolecular nanomotors via blue light‐responsive valves, which can regulate the access of hydrogen peroxide fuel into the motors. Light‐sensitive polymeric nanomotors are built up via the self‐assembly of functional block copolymers, followed by bowl‐shaped stomatocyte formation and incorporation of platinum nanoparticles. Subsequent addition of β‐cyclodextrin (β‐CD) leads to the formation of inclusion complexes with the trans‐isomers of the azobenzene derivatives grafted from the surfaces of the stomatocytes. β‐CDs attachment decreases the diffusion rate of hydrogen peroxide into the cavities of the motors because of partly blocking of the openings of the stomatocyte. This results in a lowering of the speed of the nanomotors. Upon blue light irradiation, the trans‐azobenzene moieties isomerize to the cis‐form, which lead to the detachment of the β‐CDs due to their inability to form complexes with the cis‐isomer. As a result, the speed of the nanomotors increases accordingly. Such a conformational change provides us with the unique possibility to control the speed of the supramolecular nanomotor via light‐responsive host–guest complexation. We envision that such artificial responsive nano‐systems with controlled motion could have potential applications in drug delivery.  相似文献   

8.
Catalytic tubular micro/nanomachines convert chemical energy from a surrounding aqueous fuel solution into mechanical energy to generate autonomous movements, propelled by the oxygen bubbles decomposed by hydrogen peroxide and expelled from the microtubular cavity. With the development of nanotechnology, micro/nanomotors have attracted more and more interest due to their numerous potential for in vivo and in vitro applications. Here, highly efficient chemical catalytic microtubular motors were fabricated via 3D laser lithography and their motion behavior under the action of driving force in fluids was demonstrated. The frequency of catalytically‐generated bubbles ejection was influenced by the geometrical shape of the micro/nanomotor and surrounding chemical fuel environment, resulting in the variation in motion speed. The micro/nanomotors generated with a rocket‐like shape displayed a more active motion compared with that of a single tubular micro/nanomotor, providing a wider range of practical micro‐/nanoscale applications in the future.  相似文献   

9.
We report a near‐infrared (NIR) light‐powered Janus mesoporous silica nanomotor (JMSNM) with macrophage cell membrane (MPCM) cloaking that can actively seek cancer cells and thermomechanically percolate cell membrane. Upon exposure to NIR light, a heat gradient across the Janus boundary of the JMSNMs is generated by the photothermal effect of the Au half‐shells, resulting in a self‐thermophoretic force that propels the JMSNMs. In biological medium, the MPCM camouflaging can not only prevent dissociative biological blocks from adhering to JMSNMs but also improve the seeking sensitivity of the nanomotors by specifically recognizing cancer cells. The biofriendly propulsion and recognition capability enable JMSNMs to achieve the active seeking and bind to the membrane of cancer cells. Subsequent illumination with NIR then triggers the photothermal effect of MPCM@JMSNMs to thermomechanically perforate the cytomembranes for guest molecular injection. This approach integrates the functions of active seeking, cytomembranes perforating, and thermomechanical therapy in nanomotors, which may pave the way to apply self‐propelled motors in biomedical fields.  相似文献   

10.
Chiral carbonaceous nanotubes (CNT) were successfully used in plasmon‐free surface‐enhanced Raman scattering (SERS) for the first time. Further modification of TiO2 nanocrystals on the chiral CNTs successfully realized the recycling of SERS substrate as chiral CNT/TiO2 hybrids. The high SERS sensitivity of methylene blue (MB) over the chiral CNT/TiO2 hybrids is ascribed to the laser‐driven birefringence induced by the helical structure, which provides much more opportunities for the occurrence of Raman scattering. The TiO2 nanocrystals highly dispersed on the surface and inside the hollow cavity of chiral CNTs can completely degrade the MB under the solar light irradiation, leading to the self‐cleaning of SERS substrate. The present research opens a new way for the application of chiral inorganic materials in plasmon‐free SERS detection.  相似文献   

11.
Efficient propulsion and effective direction control are essential for self‐propelled micro/nanomotors. Here, a new “two‐in‐one” strategy for making attractive light‐driven micro/nanomotors is demonstrated. We make use of the metallic and magnetic properties of low‐cost Ni and incorporate just a single Ni layer into ZnO‐based microrockets, so that the resulting ZnO‐Ni microrockets can be both efficiently propelled by low energy (low light intensities and fuel concentrations) and effectively steered by a magnetic field. This successful demonstration of ZnO‐Ni microrockets is significant for the development of highly efficient synthetic micro/nanomotors, which have strong delivery ability and efficient direction control for future applications across the micro/nanoscale field.  相似文献   

12.
Herein, we report the synthesis of biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles (NPs) for simultaneous fluorescence‐surface‐enhanced Raman scattering (F‐SERS) bimodal imaging and drug delivery. Stable Raman signals were created by typical SERS tags that were composed of Ag NPs for optical enhancement, a reporter molecule of 4‐mercaptopyridine (4‐Mpy) for a spectroscopic signature, and a silica shell for protection. A further coating of mesoporous titania (mTiO2) on the SERS tags offered high loading capacity for a fluorescence dye (flavin mononucleotide) and an anti‐cancer drug (doxorubicin (DOX)), thereby endowing the material with fluorescence‐imaging and therapeutic functions. The as‐prepared F‐SERS dots exhibited strong fluorescence when excited by light at 460 nm whilst a stable, characteristic 4‐Mpy SERS signal was detected when the excitation wavelength was changed to longer wavelength (632.8 nm), both in solution and after incorporation inside living cells. Their excellent biocompatibility was demonstrated by low cytotoxicity against MCF‐7 cells, even at a high concentration of 100 μg mL?1. In vitro cell cytotoxicity confirmed that DOX‐loaded F‐SERS dots had a comparable or even greater therapeutic effect compared with the free drug, owing to the increased cell‐uptake, which was attributed to the possible endocytosis mechanism of the NPs. To the best of our knowledge, this is the first proof‐of‐concept investigation on a multifunctional nanomedicine that possessed a combined capacity for fast and multiplexed F‐SERS labeling as well as drug‐loading for cancer therapy.  相似文献   

13.
A simple bifunctional surface‐enhanced Raman scattering (SERS) assay based on primer self‐generation strand‐displacement polymerization (PS‐SDP) is developed to detect small molecules or proteins in parallel. Triphosphate (ATP) and lysozyme are used as the models of small molecules and proteins. Compared to traditional bifunctional methods, the method possesses some remarkable features as follows: 1) by virtue of the simple PS‐SDP reaction, a bifunctional aptamer assembly binding of trigger 1 and trigger 2 was used as a functional structure for the simultaneous sensing of ATP or lysozyme. 2) The concept of isothermal amplification bifunctional detection has been first introduced into SERS biosensing applications as a signal‐amplification tool. 3) The problem of high background induced by excess bio‐barcodes is circumvented by using magnetic beads (MBs) as the carrier of signal‐output products and massive of hairpin DNA binding with SERS active bio‐barcodes relied on Au nanoparticles (Au NPs), SERS signal is significantly enhanced. Overall, with multiple amplification steps and one magnetic‐separation procedure, this flexible biosensing system exhibited not only high sensitivity and specificity, with the detection limits of ATP and lysozyme of 0.05 nM and 10 fM , respectively.  相似文献   

14.
The development of artificial nanomotor systems that are stimuli‐responsive is still posing many challenges. Herein, we demonstrate the self‐assembly of a redox‐responsive stomatocyte nanomotor system, which can be used for triggered drug release under biological reducing conditions. The redox sensitivity was introduced by incorporating a disulfide bridge between the hydrophilic poly(ethylene glycol) block and the hydrophobic polystyrene block. When incubated with the endogenous reducing agent glutathione at a concentration comparable to that within cells, the external PEG shells of these stimuli‐responsive nanomotors are cleaved. The specific bowl‐shaped stomatocytes aggregate after the treatment with glutathione, leading to the loss of motion and triggered drug release. These novel redox‐responsive nanomotors can not only be used for remote transport but also for drug delivery, which is promising for future biomedical applications.  相似文献   

15.
Visible‐light‐driven plasmonic photocatalyst Ag‐TiO2 nanocomposite hollow spheres are prepared by a template‐free chemically‐induced self‐transformation strategy under microwave‐hydrothermal conditions, followed by a photochemical reduction process under xenon lamp irradiation. The prepared samples are characterized by using scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, N2 adsorption‐desorption isotherms, X‐ray photoelectron spectroscopy, UV/Vis and Raman spectroscopy. Production of ?OH radicals on the surface of visible‐light illuminated TiO2 was detected by using a photoluminescence method with terephthalic acid as the probe molecule. The photocatalytic activity of as‐prepared samples was evaluated by photocatalytic decolorization of Rhodamine B (RhB) aqueous solution at ambient temperature under visible‐light irradiation. The results show that the surface plasmon absorption band of the silver nanoparticles supported on the TiO2 hollow spheres was red shifted, and a strong surface enhanced Raman scattering effect for the Ag‐TiO2 nanocomposite sample was observed. The prepared nanocomposite hollow spheres exhibits a highly visible‐light photocatalytic activity for photocatalytic degradation of RhB in water, and their photocatalytic activity is higher than that of pure TiO2 and commercial Degussa P25 (P25) powders. Especially, the as‐prepared Ag‐TiO2 nanocomposite hollow spheres at the nominal atomic ratio of silver to titanium ( R ) of 2 showed the highest photocatalytic activity, which exceeds that of P25 by a factor of more than 2.  相似文献   

16.
The one‐dimensional (1D) transition‐metal oxide MoO3 belt is synthesized and characterized with X‐ray diffraction, scanning electron microscopy, and Raman spectroscopy. Charge‐transfer‐(CT) enhanced Raman scattering of 4‐mercaptobenzoic acid (4‐MBA) on a 1D MoO3 belt was investigated experimentally and theoretically. The chemical enhancement of surface‐enhanced Raman scattering (SERS) of 4‐MBA on the MoO3 belt by CT is in the order of 103. The SERS of 4‐MBA was investigated theoretically by using a quantum chemical method. The remote SERS of 4‐MBA along the 1D MoO3 belt (the light excitation to one side of the MoO3 belt, and the SERS spectrum is collected on the other side of the MoO3 belt) is also shown experimentally, which provides potential applications of SERS. The incident polarization dependence of remote SERS spectra has also been investigated experimentally.  相似文献   

17.
Lemei Cai  Jing Dong  Yiru Wang  Xi Chen 《Electrophoresis》2019,40(16-17):2041-2049
Surface‐enhanced Raman scattering (SERS) greatly expands the applications of Raman spectroscopy and is a promising technique for food safety, environmental analysis, and public safety. Thin‐film microextraction (TFME) provides an efficient sample preparation method for SERS to improve its selectivity and detection efficiency. This review comprehensively describes the development and applications of SERS and TFME, including the history, mechanisim, and active substrate of SERS and the theory, device, forms, and practical applications of TFME. The applications of TFME‐SERS in food safety and environment monitoring are discussed, which could improve their advantages. TFME extracts and enriches the target analytes to eliminate the interfering substance, providing a facial way for SERS to analyze the target analytes in complex matrices. The development of TFME‐SERS technology not only expands the application range of TFME, but greatly improves the anti‐interference ability and detection sensitivity of SERS. Thus, the established methods are fast, convenient, and highly sensitive. This technology is potential to be applied in the on‐site and real‐time detection.  相似文献   

18.
Direct and rapid intracellular delivery of a functional Cas9/sgRNA complex using ultrasound‐powered nanomotors is reported. The Cas9/sgRNA complex is loaded onto the nanomotor surface through a reversible disulfide linkage. A 5 min ultrasound treatment enables the Cas9/sgRNA‐loaded nanomotors to directly penetrate through the plasma membrane of GFP‐expressing B16F10 cells. The Cas9/sgRNA is released inside the cells to achieve highly effective GFP gene knockout. The acoustic Cas9/sgRNA‐loaded nanomotors display more than 80 % GFP knockout within 2 h of cell incubation compared to 30 % knockout using static nanowires. More impressively, the nanomotors enable highly efficient knockout with just 0.6 nm of the Cas9/sgRNA complex. This nanomotor‐based intracellular delivery method thus offers an attractive route to overcome physiological barriers for intracellular delivery of functional proteins and RNAs, thus indicating considerable promise for highly efficient therapeutic applications.  相似文献   

19.
Quantitative analysis is a great challenge in surface‐enhanced Raman scattering (SERS). Core‐molecule‐shell nanoparticles with two components in the molecular layer, a framework molecule to form the shell, and a probe molecule as a Raman internal standard, were rationally designed for quantitative SERS analysis. The signal of the embedded Raman probe provides effective feedback to correct the fluctuation of samples and measuring conditions. Meanwhile, target molecules with different affinities can be adsorbed onto the shell. The quantitative analysis of target molecules over a large concentration range has been demonstrated with a linear response of the relative SERS intensity versus the surface coverage, which has not been achieved by conventional SERS methods.  相似文献   

20.
Anisotropic noble‐metal structures are attracting increasing attention because of interesting size‐ and shape‐dependent properties and have emerging applications in the fields of optics and catalysis. However, it remains a significant challenge to overcome chemical contributions and acquire molecular insight into the relationship between Raman enhancement and photocatalytic activity. This study gives visualized experimental evidence of the anisotropic spatial distribution of Raman signals and photocatalytic activity at the level of single nanometer‐thin Au microtriangles and microhexagons. Theoretical simulations indicate an anisotropic spatial distribution and sharpness‐dependent strength of the electric‐field enhancement. Analysis by using statistical surface‐enhanced Raman scattering (SERS) supports this view, that is, Raman enhancement is on the order of corner>edge>face for a single microplate, but SERS measurements at different depths of focus also imply a concentration‐dependent feature of SERS signals, especially at the corners and edges. Similarly, the SERS signals of product molecules in plasmonic photocatalysis also exhibit asymmetrical strengths at different corners of the same microplate. However, by examining the variations in the relative intensities of the SERS peaks, the difference in the photocatalytic activities at the corners, edges, and faces has been successfully calculated and is highly consistent with electric‐field simulations, thus indicating that an increased number of molecules adsorbed at specific sites does not necessarily lead to a higher conversion ratio in noble‐metal photocatalysis. Our strategy weakens the assumed impact of plasmonic local heating and, to a certain extent, excludes the influence of concentration effects and chemical contributions in noble‐metal photocatalysis, thus clearly profiling plasmon‐related characteristics. This study also promises a new research direction to understand the enhancement mechanism of SERS‐active structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号