首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cobalt(II)‐catalyzed C(sp2)?O cross‐coupling between aryl/heteroaryl alcohols and vinyl/aryl halides in the presence of CuI has been achieved under ligand‐free conditions. In this reaction, copper plays a significant role in transmetalation rather than being directly involved in the C?O coupling. This unique Co/Cu‐dual catalyst system provides an easy access to a library of aryl–vinyl, heteroaryl–styryl, aryl–aryl, and heteroaryl–heteroaryl ethers in the absence of any ligand or additive.  相似文献   

2.
Hypervalent‐iodine‐mediated oxidative coupling of the two aryl groups in either 2‐acylamino‐N‐phenyl‐benzamides or 2‐hydroxy‐N‐phenylbenzamides, with concomitant insertion of the ortho‐substituted N or O atom into the tether, has been described for the first time. This unusual metal‐free rearrangement reaction involves an oxidative C(sp2)? C(sp2) aryl–aryl bond formation, cleavage of a C(sp2)? C(O) bond, and a lactamization/lactonization. Furthermore, unsymmetrical diaryl compounds can be easily obtained by removing the tether within the cyclized product.  相似文献   

3.
The development of enantioconvergent cross‐coupling of racemic alkyl halides directly with heteroarene C(sp2)?H bonds has been impeded by the use of a base at elevated temperature that leads to racemization. We herein report a copper(I)/cinchona‐alkaloid‐derived N,N,P‐ligand catalytic system that enables oxidative addition with racemic alkyl bromides under mild conditions. Thus, coupling with azole C(sp2)?H bonds has been achieved in high enantioselectivity, affording a number of potentially useful α‐chiral alkylated azoles, such as 1,3,4‐oxadiazoles, oxazoles, and benzo[d]oxazoles as well as 1,3,4‐triazoles, for drug discovery. Mechanistic experiments indicated facile deprotonation of an azole C(sp2)?H bond and the involvement of alkyl radical species under the reaction conditions.  相似文献   

4.
Using nickel and photoredox catalysis, the direct functionalization of C(sp3)?H bonds of N‐aryl amines by acyl electrophiles is described. The method affords a diverse range of α‐amino ketones at room temperature and is amenable to late‐stage coupling of complex and biologically relevant groups. C(sp3)?H activation occurs by photoredox‐mediated oxidation to generate α‐amino radicals which are intercepted by nickel in catalytic C(sp3)?C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross‐coupling while avoiding limitations commonly associated with transition‐metal‐mediated C(sp3)?H activation, including requirements for chelating directing groups and high reaction temperatures.  相似文献   

5.
A nickel‐catalyzed alkylation of polycyclic aromatic methyl ethers as well as methyl enol ethers with B‐alkyl 9‐BBN and trialkylborane reagents that involves the cleavage of stable C(sp2)?OMe bonds is described. The transformation has a wide substrate scope and good chemoselectivity profile while proceeding under mild reaction conditions; it provides a versatile way to form C(sp2)?C(sp3) bonds that does not suffer from β‐hydride elimination. Furthermore, a selective and sequential alkylation process by cleavage of inert C?O bonds is presented to demonstrate the advantage of this method.  相似文献   

6.
An enantioselective C(sp3)?C(sp3) cross‐coupling of racemic α‐silylated alkyl iodides and alkylzinc reagents is reported. The reaction is catalyzed by NiCl2/(S,S)‐Bn‐Pybox and yields α‐chiral silanes with high enantiocontrol. The catalyst system does not promote the cross‐coupling of the corresponding carbon analogue, corroborating the stabilizing effect of the silyl group on the alkyl radical intermediate (α‐silicon effect). Both coupling partners can be, but do not need to be, functionalized, and hence, even α‐chiral silanes with no functional group in direct proximity of the asymmetrically substituted carbon atom become accessible. This distinguishes the new method from established approaches for the synthesis of α‐chiral silanes.  相似文献   

7.
A highly selective CuII‐catalyzed cross‐dehydrogenative ortho‐aminomethylation of phenols with aniline derivatives is described. The corresponding C(sp2)?C(sp3) coupling products were obtained in moderate to excellent yields under mild reaction conditions and with a broad substrate scope. A radical mechanism is proposed.  相似文献   

8.
The direct C(sp2)? C(sp3) cross‐coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides proceeded in the absence of coordinating ethereal solvents at ambient temperature without the addition of a catalyst. The C(sp2)? C(sp3) cross‐coupling showed excellent functional‐group tolerance, and products were isolated in high yields, generally without the requirement for purification by chromatography. This process represents an expedient, operationally simple method for the construction of new C(sp2)? C(sp3) bonds.  相似文献   

9.
Defluorinative C(sp3)?P bond formation of α‐trifluoromethyl alkenes with phosphine oxides or phosphonates have been achieved under catalyst‐ and oxidant‐free conditions, giving phosphorylation gem‐difluoroalkenes as products. α‐Trifluoromethyl alkenes bearing various of aryl substituents such as halogen, cyano, ester and heterocyclic groups are available in this transformation. The results of control experiments demonstrated that the mechanism of dehydrogenative/defluorinative cross‐coupling reactions was not a radical route, but might be an SN2′ process involving phosphine oxide anion.  相似文献   

10.
The intramolecular coupling of two C(sp3)?H bonds to forge a C(sp3)?C(sp3) bond is enabled by 1,4‐Pd shift from a trisubstituted aryl bromide. Contrary to most C(sp3)?C(sp3) cross‐dehydrogenative couplings, this reaction operates under redox‐neutral conditions, with the C?Br bond acting as an internal oxidant. Furthermore, it allows the coupling between two moderately acidic primary or secondary C?H bonds, which are adjacent to an oxygen or nitrogen atom on one side, and benzylic or adjacent to a carbonyl group on the other side. A variety of valuable fused heterocycles were obtained from easily accessible ortho‐bromophenol and aniline precursors. The second C?H bond cleavage was successfully replaced with carbonyl insertion to generate other types of C(sp3)‐C(sp3) bonds.  相似文献   

11.
A novel visible‐light‐driven decarboxylative coupling of alkyl N‐hydroxyphthalimide esters (NHP esters) with quinoxalin‐2(1H)‐ones has been developed. This C(sp2)?C(sp3) bond‐forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3‐primary alkyl‐substituted quinoxalin‐2(1H)‐ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3‐alkylated quinoxalin‐2(1H)‐ones.  相似文献   

12.
The first transition‐metal‐free, site‐specific umpolung trifluoromethylthiolation of tertiary alkyl ethers has been developed, achieving the challenging tertiary C(sp3)–SCF3 coupling under redox‐neutral conditions. The synergism of organophotocatalyst 4CzIPN and BINOL‐based phosphorothiols can site‐selectively cleave tertiary sp3 C(sp3)–O ether bonds in complex molecules initiated by a polarity‐matching hydrogen‐atom‐transfer (HAT) event. The incorporation of several competing benzylic and methine C(sp3)?H bonds in alkyl ethers has little influence on the regioselectivity. Selective difluoromethylthiolation of C?O bonds has also been achieved. This represents not only an important step forward in trifluoromethylthiolation but also a promising means for site‐selective C?O bond functionalization of unsymmetrical tertiary alkyl ethers.  相似文献   

13.
With a ruthenium–porphyrin catalyst, alkyl diazomethanes generated in situ from N‐tosylhydrazones efficiently underwent intramolecular C(sp3)? H insertion of an alkyl carbene to give substituted tetrahydrofurans and pyrrolidines in up to 99 % yield and with up to 99:1 cis selectivity. The reaction displays good tolerance of many functionalities, and the procedure is simple without the need for slow addition with a syringe pump. From a synthetic point of view, the C? H insertion of N‐tosylhydrazones can be viewed as reductive coupling between a C?O bond and a C? H bond to form a new C? C bond, since N‐tosylhydrazones can be readily prepared from carbonyl compounds. This reaction was successfully applied in a concise synthesis of (±)‐pseudoheliotridane.  相似文献   

14.
Chemoselective C(sp3)? C(sp2) coupling reactions under mild reaction conditions are useful for synthesizing alkyl‐substituted alkenes having sensitive functional groups. Reported here is a visible‐light‐induced chemoselective alkenylation through a deboronation/decarboxylation sequence under neutral aqueous reaction conditions at room temperature. This reaction represents the first hypervalent‐iodine‐enabled radical decarboxylative alkenylation reaction, and a novel benziodoxole‐vinyl carboxylic acid reaction intermediate was isolated. This C(sp3)? C(sp2) coupling reaction leads to aryl‐and acyl‐substituted alkenes containing various sensitive functional groups. The excellent chemoselectivity, stable reactants, and neutral aqueous reaction conditions of the reaction suggest future biomolecule applications.  相似文献   

15.
Heteroarenes are structural motifs found in many bioactive compounds and functional materials. Dehydrogenative cross‐coupling of heteroarenes with aliphatic C?H bonds provides straightforward access to functionalized heteroarenes from readily available materials. Established methods employ stoichiometric chemical oxidants under conditions of heating or light irradiation. By merging electrochemistry and photochemistry, we have achieved efficient photoelectrochemical dehydrogenative cross‐coupling of heteroarenes and C(sp3)?H donors through H2 evolution, without the addition of metal catalysts or chemical oxidants. Mechanistically, the C(sp3)?H donor is converted to a nucleophilic carbon radical through H‐atom transfer with chlorine atom, which is produced by light irradiation of anodically generated Cl2 from Cl?. The carbon radical then undergoes radical substitution to the heteroarene to afford alkylated heteroarene products.  相似文献   

16.
Reported herein is a novel visible‐light photoredox system with Pd(PPh3)4 as the sole catalyst for the realization of the first direct cross‐coupling of C(sp3)−H bonds in N‐aryl tetrahydroisoquinolines with unactivated alkyl bromides. Moreover, intra‐ and intermolecular alkylations of heteroarenes were also developed under mild reaction conditions. A variety of tertiary, secondary, and primary alkyl bromides undergo reaction to generate C(sp3)−C(sp3) and C(sp2)−C(sp3) bonds in moderate to excellent yields. These redox‐neutral reactions feature broad substrate scope (>60 examples), good functional‐group tolerance, and facile generation of quaternary centers. Mechanistic studies indicate that the simple palladium complex acts as the visible‐light photocatalyst and radicals are involved in the process.  相似文献   

17.
N‐Ylide complexes of Ir have been generated by C(sp3)?H activation of α‐pyridinium or α‐imidazolium esters in reactions with [Cp*IrCl2]2 and NaOAc. These reactions are rare examples of C(sp3)?H activation without a covalent directing group, which—even more unusually—occur α to a carbonyl group. For the reaction of the α‐imidazolium ester [ 3 H]Cl, the site selectivity of C?H activation could be controlled by the choice of metal and ligand: with [Cp*IrCl2]2 and NaOAc, C(sp3)?H activation gave the N‐ylide complex 4 ; in contrast, with Ag2O followed by [Cp*IrCl2]2, C(sp2)?H activation gave the N‐heterocyclic carbene complex 5 . DFT calculations revealed that the N‐ylide complex 4 was the kinetic product of an ambiphilic C?H activation. Examination of the computed transition state for the reaction to give 4 indicated that unlike in related reactions, the acetate ligand appears to play the dominant role in C?H bond cleavage.  相似文献   

18.
A RhI‐catalyzed three‐component reaction of tert‐propargyl alcohol, diazoester, and alkyl halide has been developed. This reaction can be considered as a carbene‐involving sequential alkyl and alkynyl coupling, in which C(sp)? C(sp3) and C(sp3)? C(sp3) bonds are built successively on the carbenic carbon atom. The RhI‐carbene migratory insertion of an alkynyl moiety and subsequent alkylation are proposed to account for the two separate C? C bond formations. This reaction provides an efficient and tunable method for the construction of all‐carbon quaternary center.  相似文献   

19.
Aryl trifluoromethyl ethers (ArOCF3) are prevalent in pharmaceuticals, agrochemicals, and materials. However, methods for the general and efficient synthesis of these compounds are extremely underdeveloped and limited. Herein, we describe a highly efficient and general procedure for the direct O‐trifluoromethylation of unprotected phenols through a silver‐mediated cross‐coupling reaction using CF3SiMe3 as the CF3 source and exogenous oxidants. This novel oxidative trifluoromethylation provides access to a wide range of aryl trifluoromethyl ethers from simple phenols. The mild process was also applied to the late‐stage trifluoromethylation of a medicinally relevant compound.  相似文献   

20.
Combining an electrophilic iron complex [Fe(Fpda)(THF)]2 ( 3 ) [Fpda=N,N′‐bis(pentafluorophenyl)‐o‐phenylenediamide] with the pre‐activation of α‐alkyl‐substituted α‐diazoesters reagents by LiAl(ORF)4 [ORF=(OC(CF3)3] provides unprecedented access to selective iron‐catalyzed intramolecular functionalization of strong alkyl C(sp3)?H bonds. Reactions occur at 25 °C via α‐alkyl‐metallocarbene intermediates, and with activity/selectivity levels similar to those of rhodium carboxylate catalysts. Mechanistic investigations reveal a crucial role of the lithium cation in the rate‐determining formation of the electrophilic iron‐carbene intermediate, which then proceeds by concerted insertion into the C?H bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号