首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Alkyl aryl ethers are an important class of compounds in medicinal and agricultural chemistry. Catalytic C(sp3)?O cross‐coupling of alkyl electrophiles with phenols is an unexplored disconnection strategy to the synthesis of alkyl aryl ethers, with the potential to overcome some of the major limitations of existing methods such as C(sp2)?O cross‐coupling and SN2 reactions. Reported here is a tandem photoredox and copper catalysis to achieve decarboxylative C(sp3)?O coupling of alkyl N‐hydroxyphthalimide (NHPI) esters with phenols under mild reaction conditions. This method was used to synthesize a diverse set of alkyl aryl ethers using readily available alkyl carboxylic acids, including many natural products and drug molecules. Complementarity in scope and functional‐group tolerance to existing methods was demonstrated.  相似文献   

2.
The development of enantioconvergent cross‐coupling of racemic alkyl halides directly with heteroarene C(sp2)?H bonds has been impeded by the use of a base at elevated temperature that leads to racemization. We herein report a copper(I)/cinchona‐alkaloid‐derived N,N,P‐ligand catalytic system that enables oxidative addition with racemic alkyl bromides under mild conditions. Thus, coupling with azole C(sp2)?H bonds has been achieved in high enantioselectivity, affording a number of potentially useful α‐chiral alkylated azoles, such as 1,3,4‐oxadiazoles, oxazoles, and benzo[d]oxazoles as well as 1,3,4‐triazoles, for drug discovery. Mechanistic experiments indicated facile deprotonation of an azole C(sp2)?H bond and the involvement of alkyl radical species under the reaction conditions.  相似文献   

3.
A RhI‐catalyzed three‐component reaction of tert‐propargyl alcohol, diazoester, and alkyl halide has been developed. This reaction can be considered as a carbene‐involving sequential alkyl and alkynyl coupling, in which C(sp)? C(sp3) and C(sp3)? C(sp3) bonds are built successively on the carbenic carbon atom. The RhI‐carbene migratory insertion of an alkynyl moiety and subsequent alkylation are proposed to account for the two separate C? C bond formations. This reaction provides an efficient and tunable method for the construction of all‐carbon quaternary center.  相似文献   

4.
Using nickel and photoredox catalysis, the direct functionalization of C(sp3)?H bonds of N‐aryl amines by acyl electrophiles is described. The method affords a diverse range of α‐amino ketones at room temperature and is amenable to late‐stage coupling of complex and biologically relevant groups. C(sp3)?H activation occurs by photoredox‐mediated oxidation to generate α‐amino radicals which are intercepted by nickel in catalytic C(sp3)?C coupling. The merger of these two modes of catalysis leverages nickel's unique properties in alkyl cross‐coupling while avoiding limitations commonly associated with transition‐metal‐mediated C(sp3)?H activation, including requirements for chelating directing groups and high reaction temperatures.  相似文献   

5.
Defluorinative C(sp3)?P bond formation of α‐trifluoromethyl alkenes with phosphine oxides or phosphonates have been achieved under catalyst‐ and oxidant‐free conditions, giving phosphorylation gem‐difluoroalkenes as products. α‐Trifluoromethyl alkenes bearing various of aryl substituents such as halogen, cyano, ester and heterocyclic groups are available in this transformation. The results of control experiments demonstrated that the mechanism of dehydrogenative/defluorinative cross‐coupling reactions was not a radical route, but might be an SN2′ process involving phosphine oxide anion.  相似文献   

6.
A palladium‐catalyzed C(sp3)−C(sp2) Suzuki–Miyaura cross‐coupling of aryl boronic acids and α‐(trifluoromethyl)benzyl tosylates is reported. A readily available, air‐stable palladium catalyst was employed to access a wide range of functionalized 1,1‐diaryl‐2,2,2‐trifluoroethanes. Enantioenriched α‐(trifluoromethyl)benzyl tosylates were found to undergo cross‐coupling to give the corresponding enantioenriched cross‐coupled products with an overall inversion in configuration. The crucial role of the CF3 group in promoting this transformation is demonstrated by comparison with non‐fluorinated derivatives.  相似文献   

7.
A novel visible‐light‐driven decarboxylative coupling of alkyl N‐hydroxyphthalimide esters (NHP esters) with quinoxalin‐2(1H)‐ones has been developed. This C(sp2)?C(sp3) bond‐forming transformation exhibits excellent substrate generality with respect to both the coupling partners. Of note, a series of 3‐primary alkyl‐substituted quinoxalin‐2(1H)‐ones that were difficult to synthesize by previous methods could be obtained in moderate to excellent yields. Additionally, the mild conditions, easy availability of substrates, wide functional group tolerance and operational simplicity make this protocol practical in the synthesis of 3‐alkylated quinoxalin‐2(1H)‐ones.  相似文献   

8.
PdII‐catalyzed enantioselective C(sp3)?H cross‐coupling of free carboxylic acids with organoborons has been realized using either mono‐protected amino acid (MPAA) ligands or mono‐protected aminoethyl amine (MPAAM) ligands. A diverse range of aryl‐ and vinyl‐boron reagents can be used as coupling partners to provide chiral carboxylic acids. This reaction provides an alternative approach to the enantioselective synthesis of cyclopropanecarboxylic acids and cyclobutanecarboxylic acids containing α‐chiral tertiary and quaternary stereocenters. The utility of this reaction was further demonstrated by converting the carboxylic acid into cyclopropyl amine without loss of optical activity.  相似文献   

9.
《中国化学》2018,36(3):217-222
The first catalytic enantioselective C(sp)―C(sp3) cross‐coupling reaction between N‐tosylhydrazones and trialkylsilylethynes in the presence of Cu(I) salts and chiral phosphoramidite ligands was developed. A series of synthetically interesting, functionalized alkynes were obtained with moderate to good enantioselectivities (up to 83% ee). Cu(II) carbene migratory insertion is proposed to be the enantio‐determining step.  相似文献   

10.
The direct C(sp2)? C(sp3) cross‐coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides proceeded in the absence of coordinating ethereal solvents at ambient temperature without the addition of a catalyst. The C(sp2)? C(sp3) cross‐coupling showed excellent functional‐group tolerance, and products were isolated in high yields, generally without the requirement for purification by chromatography. This process represents an expedient, operationally simple method for the construction of new C(sp2)? C(sp3) bonds.  相似文献   

11.
A new α‐C(sp3)? H alkynylation of unactivated tertiary aliphatic amines with 1‐iodoalkynes as radical alkynylating reagents in the presence of [Au2(μ‐dppm)2]2+ in sunlight provides propargylic amines. Based on mechanistic studies, a C? C coupling of an α‐aminoalkyl radical and an alkynyl radical is proposed for the C(sp3)? C(sp) bond formation. The mild, convenient, efficient, and highly selective C(sp3)? H alkynylation reaction shows excellent regioselectivity and good functional‐group compatibility. A scale‐up to gram quantities is possible with sunlight used as a clean and sustainable energy source.  相似文献   

12.
A metal‐free C(sp2)–C(sp2) cross‐coupling approach to highly congested (E)‐α‐naphtholylenals from simple naphthols and enals is described. The mild reaction conditions with pyridine hydrobromideperbromide (PHBP) as the bromination reagent in the presence of piperidine or diphenylprolinol trimethylsilyl (TMS) ether as promoters enable the process in good yields and with high chemoselectivity, regioselectivity, and stereoselectivity. The process involves an unprecedented pathway of in situ regioselective 4‐bromination of 1‐naphthols and the subsequent unusual aromatic nucleophilic substitution of the resulting 4‐bromo‐1‐naphthols with the α‐C(sp2) of enals through a Michael‐type Friedel–Crafts alkylation–dearomatization followed by a cyclopropanation ring‐opening cascade process. The noteworthy features of this strategy are highlighted by the highly efficient creation of a C(sp2)–C(sp2) bond from readily available unfunctionalized naphthols and enals catalyzed by non‐metal, readily available cyclic secondary amines under mild reaction conditions.  相似文献   

13.
This work reports a modular and rapid approach to the stereoselective synthesis of a variety of α‐ and β‐(1→2)‐linked C‐disaccharides. The key step is a Ni‐catalyzed cross‐coupling reaction of D ‐glucal pinacol boronate with alkyl halide glycoside easily prepared from commercially available D ‐glucal. The products of this sp2–sp3 cross‐coupling reaction can be converted to glucopyranosyl, mannopyranosyl, or 2‐deoxy‐glucopyranosyl C‐mannopyranosides by one‐ or two‐step stereoselective oxidative–reductive transformations. To the best of our knowledge, we demonstrated the first synthetic application of a challenging sp2–sp3 Suzuki‐Miyaura cross‐coupling reaction in carbohydrate chemistry.  相似文献   

14.
The direct C(sp2) C(sp3) cross‐coupling of diaryl zinc reagents with benzylic, primary, secondary, and tertiary alkyl halides proceeded in the absence of coordinating ethereal solvents at ambient temperature without the addition of a catalyst. The C(sp2) C(sp3) cross‐coupling showed excellent functional‐group tolerance, and products were isolated in high yields, generally without the requirement for purification by chromatography. This process represents an expedient, operationally simple method for the construction of new C(sp2) C(sp3) bonds.  相似文献   

15.
A transition‐metal‐ and oxidant‐free DNP (2,4‐dinitrophenol)‐catalyzed atom‐economical regio‐ and diastereoselective synthesis of monofunctionalized α‐alkynyl‐3‐amino‐2‐oxindole derivatives by C?H bond functionalization of cyclic amines and alkynes with indoline‐2,3‐diones has been developed. This cascade event sequentially involves the reductive amination of indoline‐2,3‐dione by imine formation and cross coupling between C(sp3)?H and C(sp)?H of the cyclic amines and alkynes. This reaction offers an efficient and attractive pathway to different types of α‐alkynyl‐3‐amino‐2‐oxindole derivatives in good yields with a wide tolerance of functional groups. The salient feature of this methodology is that it completely suppresses the homocoupling of alkynes. To the best of our knowledge, this is the first example of a DNP‐catalyzed metal‐free direct C(sp3)?H and C(sp)?H bond functionalization providing biologically active α‐alkynyl‐3‐amino‐2‐oxindole scaffolds.  相似文献   

16.
α‐Vinylation of phosphonates, phosphine oxides, sulfones, sulfonamides, and sulfoxides has been achieved by selective C?H zincation and copper‐catalyzed C(sp3)?C(sp2) cross‐coupling reaction using vinylphenyliodonium salts. The vinylation transformation proceeds in high efficiency and stereospecificity under mild reaction conditions. This zincative cross‐coupling reaction represents a general alkenylation strategy, which is also applicable for α‐alkenylation of esters, amides, and nitriles in the synthesis of β,γ‐unsaturated carbonyl compounds.  相似文献   

17.
A palladium‐catalyzed intermolecular decarboxylative C(sp3)–C(sp) coupling of diarylmethyl carbonates and terminal alkynes has been developed. The reaction proceeds smoothly under external base‐free conditions to deliver the corresponding alkynylated diarylmethanes with the liberation of CO2 and MeOH as the sole byproducts. Moreover, enantioenriched diarylmethyl carbonates are stereospecifically converted to optically active cross‐coupling products with inversion of configuration. Thus, the stereospecific palladium catalysis can provide new and unique access to the alkynylated chiral tertiary stereocenters, which are relatively difficult to construct by conventional methods.  相似文献   

18.
The alkylation of unactivated β‐methylene C(sp3)? H bonds of α‐amino acid substrates with a broad range of alkyl iodides using Pd(OAc)2 as the catalyst is described. The addition of NaOCN and 4‐Cl‐C6H4SO2NH2 was found to be crucial for the success of this transformation. The reaction is compatible with a diverse array of functional groups and proceeds with high diastereoselectivity. Furthermore, various β,β‐hetero‐dialkyl‐ and β‐alkyl‐β‐aryl‐α‐amino acids were prepared by sequential C(sp3)? H functionalization of an alanine‐derived substrate, thus providing a versatile strategy for the stereoselective synthesis of unnatural β‐disubstituted α‐amino acids.  相似文献   

19.
A decarboxylative silylation of aliphatic N ‐hydroxyphthalimide (NHPI) esters using Si−B reagents as silicon pronucleophiles is reported. This C(sp3)−Si cross‐coupling is catalyzed by copper(I) and follows a radical mechanism, even with exclusion of light. Both primary and secondary alkyl groups couple effectively, whereas tertiary alkyl groups are probably too sterically hindered. The functional‐group tolerance is generally excellent, and α‐heteroatom‐substituted substrates also participate well. This enables, for example, the synthesis of α‐silylated amines starting from NHPI esters derived from α‐amino acids. The new method extends the still limited number of C(sp3)−Si cross‐couplings of unactivated alkyl electrophiles.  相似文献   

20.
The Ni‐catalyzed C(sp2)?H/C(sp3)?H coupling of benzamides with toluene derivatives was recently successfully achieved with mild oxidant iC3F7I. Herein, we employ density functional theory (DFT) methods to resolve the mechanistic controversies. Two previously proposed mechanisms are excluded, and our proposed mechanism involving iodine‐atom transfer (IAT) between iC3F7I and the NiII intermediate was found to be more feasible. With this mechanism, the presence of a carbon radical is consistent with the experimental observation that (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) completely quenches the reaction. Meanwhile, the hydrogen‐atom abstraction of toluene is irreversible and the activation of the C(sp2)?H bond of benzamides is reversible. Both of these conclusions are in good agreement with Chatani's deuterium‐labeling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号