首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
[n]Cycloparaphenylenes ([n]CPPs) with n=5, 8, 10 and 12 and their noncovalent ring-in-ring and [m]fullerene-in-ring complexes with m=60, 70 and 84 have been studied by direct and matrix-assisted laser desorption ionization ((MA)LDI) and density-functional theory (DFT). LDI is introduced as a straightforward approach for the sensitive analysis of CPPs, free from unwanted decomposition and without the need of a matrix. The ring-in-ring system of [[10]CPP⊃[5]CPP]+. was studied in positive-ion MALDI. Fragmentation and DFT indicate that the positive charge is exclusively located on the inner ring, while in [[10]CPP⊃C60]+. it is located solely on the outer nanohoop. Positive-ion MALDI is introduced as a new sensitive method for analysis of CPP⊃fullerene complexes, enabling the detection of novel complexes [[12]CPP⊃C60, 70 and 84]+. and [[10]CPP⊃C84]+.. Selective binding can be observed when mixing one fullerene with two CPPs or vice versa, reflecting ideal size requirements for efficient complex formation. Geometries, binding and fragmentation energies of CPP⊃fullerene complexes from DFT calculations explain the observed fragmentation behavior.  相似文献   

2.
Treatment of [Cp*(dppe)Fe? C?C‐TTFMe3] ( 1 ) with Ag[PF6] (3 equiv) in DMF provides the binuclear complex [Cp*(dppe)Fe?C?C?TTFMe2?CH? CH?TTFMe2?C?C=Fe(dppe)Cp*][PF6]2 ( 2 [PF6]2) isolated as a deep‐blue powder in 69 % yield. EPR monitoring of the reaction and comparison of the experimental and calculated EPR spectra allowed the identification of the radical salt [Cp*(dppe)Fe?C?C?TTFMe2?CH][PF6]2 ([ 1‐CH ][PF6]) an intermediate of the reaction, which results from the activation of the methyl group attached in vicinal position with respect to the alkynyl–iron on the TTF ligand by the triple oxidation of 1 leading to its deprotonation by the solvent. The dimerization of [ 1‐CH ][PF6] through carbon–carbon bond formation provides 2 [PF6]2. The cyclic voltammetry (CV) experiments show that 2 [PF6]2 is subject to two sequential well‐reversible one‐electron reductions yielding the complexes 2 [PF6] and 2 . The CV also shows that further oxidation of 2 [PF6]2 generates 2 [PF6]n (n=3–6) at the electrode. Treatment of 2 [PF6]2 with KOtBu provides 2 [PF6] and 2 as stable powders. The salts 2 [PF6] and 2 [PF6]2 were characterized by XRD. The electronic structures of 2 n+ (n=0–2) were computed. The new complexes were also characterized by NMR, IR, Mössbauer, EPR, UV/Vis and NIR spectroscopies. The data show that the three complexes 2 [PF6]n are iron(II) derivatives in the ground state. In the solid state, the dication 2 2+ is diamagnetic and has a bis(allenylidene‐iron) structure with one positive charge on each iron building block. In solution, as a result of the thermal motion of the metal–carbon backbone, the triplet excited state becomes thermally accessible and equilibrium takes place between singlet and triplet states. In 2 [PF6], the charge and the spin are both symmetrically distributed on the carbon bridge and only moderately on the iron and TTFMe2 electroactive centers.  相似文献   

3.
Mono‐ and multinuclear complexes of ruthenium and [n]cycloparaphenylene (CPP, n=5 and 6) were synthesized in excellent yields through ligand exchange of the cationic complex [(Cp)Ru(CH3CN)3](PF6) with CPP. In the multinuclear complexes, ruthenium selectively coordinated to alternate paraphenylene units to give bis‐ and tris‐coordinated Ru complexes for [5] and [6]CPPs, respectively. Single‐crystal X‐ray analysis revealed the Ru was coordinated with η6‐hapticity on the convex surface of CPP.  相似文献   

4.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

5.
Chemical reduction of several cycloparaphenylenes (CPPs) ranging in size from [8]CPP to [12]CPP has been investigated with potassium metal in THF. The X-ray diffraction characterization of the resulting doubly-reduced [n]CPPs provided a unique series of carbon nanohoops with increasing dimensions and core flexibility for the first comprehensive structural analysis. The consequences of electron acquisition by a [n]CPP core have been analyzed in comparison with the neutral parents. The addition of two electrons to the cyclic carbon framework of [n]CPPs leads to the characteristic elliptic core distortion and facilitates the internal encapsulation of sizable cationic guests. Molecular and solid-state structure changes, alkali metal binding and unique size-dependent host abilities of the [n]CPP2− series with n = 6–12 are discussed. This in-depth analysis opens new perspectives in supramolecular chemistry of [n]CPPs and promotes their applications in size-selective guest encapsulation and chemical separation.

The series of doubly-reduced cycloparaphenylenes (CPPs) with increasing dimensions and flexibility shows the size-dependent structural changes and enhanced host abilities.  相似文献   

6.
The reaction of CuI, AgI, and AuI salts with carbon monoxide in the presence of weakly coordinating anions led to known and structurally unknown non‐classical coinage metal carbonyl complexes [M(CO)n][A] (A=fluorinated alkoxy aluminates). The coinage metal carbonyl complexes [Cu(CO)n(CH2Cl2)m]+[A]? (n=1, 3; m=4?n), [Au2(CO)2Cl]+[A]?, [(OC)nM(A)] (M=Cu: n=2; Ag: n=1, 2) as well as [(OC)3Cu???ClAl(ORF)3] and [(OC)Au???ClAl(ORF)3] were analyzed with X‐ray diffraction and partially IR and Raman spectroscopy. In addition to these structures, crystallographic and spectroscopic evidence for the existence of the tetracarbonyl complex [Cu(CO)4]+[Al(ORF)4]? (RF=C(CF3)3) is presented; its formation was analyzed with the help of theoretical investigations and Born–Fajans–Haber cycles. We discuss the limits of structure determinations by routine X‐ray diffraction methods with respect to the C? O bond lengths and apply the experimental CO stretching frequencies for the prediction of bond lengths within the carbonyl ligand based on a correlation with calculated data. Moreover, we provide a simple explanation for the reported, partly confusing and scattered CO stretching frequencies of [CuI(CO)n] units.  相似文献   

7.
Starting from fluoridosilicate precursors in neat cyanotrimethylsilane, Me3Si?CN, a series of different ammonium salts [R3NMe]+ (R=Et, nPr, nBu) with the novel [SiF(CN)5]2? and [Si(CN)6]2? dianions was synthesized in facile, temperature controlled F?/CN? exchange reactions. Utilizing decomposable, non‐innocent cations, such as [R3NH]+, it was possible to generate metal salts of the type M2[Si(CN)6] (M+=Li+, K+) via neutralization reactions with the corresponding metal hydroxides. The ionic liquid [BMIm]2[Si(CN)6] (m.p.=72 °C, BMIm=1‐butyl‐3‐methylimidazolium) was obtained by a salt metathesis reaction. All the synthesized salts could be isolated in good yields and were fully characterized.  相似文献   

8.
A series of five complexes that incorporate the guanidinium ion and various deprotonated forms of Kemp’s triacid (H3KTA) have been synthesized and characterized by single‐crystal X‐ray analysis. The complex [C(NH2)3+] ? [H2KTA?] ( 1 ) exhibits a sinusoidal layer structure with a centrosymmetric pseudo‐rosette motif composed of two ion pairs. The fully deprotonated Kemp’s triacid moiety in 3 [C(NH2)3+] ? [KTA3?] ( 2 ) forms a record number of eighteen acceptor hydrogen bonds, thus leading to a closely knit three‐dimensional network. The KTA3? anion adopts an uncommon twist conformation in [(CH3)4N+] ? 2 [C(NH2)3+] ? [KTA3?] ? 2 H2O ( 3 ). The crystal structure of [(nC3H7)4N+] ? 2 [C(NH2)3+] ? [KTA3?] ( 4 ) features a tetrahedral aggregate of four guanidinium ions stabilized by an outer shell that comprises six equatorial carboxylate groups that belong to separate [KTA3?] anions. In 3 [(C2H5)4N+] ? 20 [C(NH2)3+] ? 11 [HKTA2?] ? [H2KTA?] ? 17 H2O ( 5 ), an even larger centrosymmetric inner core composed of eight guanidinium ions and six bridging water molecules is enclosed by a crust composed of eighteen axial carboxyl/carboxylate groups from six HKTA2? anions.  相似文献   

9.
Carbon–carbon bond reductive elimination from gold(III) complexes are known to be very slow and require high temperatures. Recently, Toste and co‐workers have demonstrated extremely rapid C?C reductive elimination from cis‐[AuPPh3(4‐F‐C6H4)2Cl] even at low temperatures. We have performed DFT calculations to understand the mechanistic pathway for these novel reductive elimination reactions. Direct dynamics calculations inclusive of quantum mechanical tunneling showed significant contribution of heavy‐atom tunneling (>25 %) at the experimental reaction temperatures. In the absence of any competing side reactions, such as phosphine exchange/dissociation, the complex cis‐[Au(PPh3)2(4‐F‐C6H4)2]+ was shown to undergo ultrafast reductive elimination. Calculations also revealed very facile, concerted mechanisms for H?H, C?H, and C?C bond reductive elimination from a range of neutral and cationic gold(III) centers, except for the coupling of sp3 carbon atoms. Metal–carbon bond strengths in the transition states that originate from attractive orbital interactions control the feasibility of a concerted reductive elimination mechanism. Calculations for the formation of methane from complex cis‐[AuPPh3(H)CH3]+ predict that at ?52 °C, about 82 % of the reaction occurs by hydrogen‐atom tunneling. Tunneling leads to subtle effects on the reaction rates, such as large primary kinetic isotope effects (KIE) and a strong violation of the rule of the geometric mean of the primary and secondary KIEs.  相似文献   

10.
Metallacyclic complex [(Me2N)3Ta(η2‐CH2SiMe2NSiMe3)] ( 3 ) undergoes C?H activation in its reaction with H3SiPh to afford a Ta/μ‐alkylidene/hydride complex, [(Me2N)2{(Me3Si)2N}Ta(μ‐H)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 4 ). Deuterium‐labeling studies with [D3]SiPh show H–D exchange between the Ta?D ?Ta unit and all methyl groups in [(Me2N)2{(Me3Si)2N}Ta(μ‐D)2(μ‐C‐η2‐CHSiMe2NSiMe3)Ta(NMe2)2] ([D2]‐ 4 ) to give the partially deuterated complex [Dn]‐ 4 . In addition, 4 undergoes β‐H abstraction between a hydride and an NMe2 ligand and forms a new complex [(Me2N){(Me3Si)2N}Ta(μ‐H)(μ‐N‐η2‐C,N‐CH2NMe)(μ‐C‐η2‐C,N‐CHSiMe2NSiMe3)Ta(NMe2)2] ( 5 ) with a cyclometalated, η2‐imine ligand. These results indicate that there are two simultaneous processes in [Dn]‐ 4 : 1) H–D exchange through σ‐bond metathesis, and 2) H?D elimination through β‐H abstraction (to give [Dn]‐ 5 ). Both 4 and 5 have been characterized by single‐crystal X‐ray diffraction studies.  相似文献   

11.
The free‐radical polymerization of methyl acrylate (MA) has been studied in the presence of a novel cyclic dixanthate under γ‐ray irradiation (80 Gy min?1) at room temperature (~28 °C), ?30 °C, and ?76 °C respectively. The resultant polymers have controlled molecular weights and relatively narrow molecular weight distributions, especially at low temperatures (i.e., ?30 and ?76 °C). The polymerization control may be associated with the temperature: the lower the temperature is, the more control there is. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis of poly(methyl acrylate) (PMA) samples shows that there are at least three distributions: [3‐(MA)n‐H]+ cyclic polymers, [3‐(MA)n‐THF‐H]+, and [3‐(MA)n‐(THF)2‐H]+ linear PMAs. The relative content of the cyclic polymers markedly increases at a lower temperature, and this may be related to the reduced diffusion rate and the suppressed chain‐transfer reaction at the low temperature. It is evidenced that the good control of the polymerization at the low temperature may be associated with the suppressed chain‐transfer reaction, unlike reversible addition–fragmentation chain transfer polymerization. In addition, styrene bulk polymerizations have been performed, and gel permeation chromatography traces show that there is only one cyclic dixanthate moiety in the polymer chain. This article is the first to report the influence of a low temperature on controlled free‐radical polymerizations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2847–2854, 2007  相似文献   

12.
The reaction of different metallocene fragments [Cp2M] (Cp=η5‐cyclopentadienyl, M=Ti, Zr) with diferrocenylacetylene and 1,4‐diferrocenylbuta‐1,3‐diyne is described. The titanocene complexes form the highly strained three‐ and five‐membered ring systems [Cp2Ti(η2‐FcC2Fc)] ( 1 ) and [Cp2Ti(η4‐FcC4Fc)] ( 2 ) (Fc=[Fe(η5‐C5H4)(η5‐C5H5)]) by addition of the appropriate alkyne or diyne to Cp2Ti. Zirconocene precursors react with diferrocenyl‐ and ferrocenylphenylacetylene under C? C bond coupling to yield the metallacyclopentadienes [Cp2Zr(C4Fc4)] ( 3 ) and [Cp2Zr(C4Fc2Ph2)] ( 5 ), respectively. The exchange of the zirconocene unit in 3 by hydrogen atoms opens the route to the super‐crowded ferrocenyl‐substituted compound tetraferrocenylbutadiene ( 4 ). On the other hand, the reaction of 1,4‐diferrocenylbuta‐1,3‐diyne with zirconocene complexes afforded a cleavage of the central C? C bond, and thus, dinuclear [{Cp2Zr(μ‐η12‐C?CFc)}2] ( 6 ) that consists of two zirconocene acetylide groups was formed. Most of the complexes were characterized by single‐crystal X‐ray crystallography, showing attractive multinuclear molecules. The redox properties of 3 , 5 , and 6 were studied by cyclic voltammetry. Upon oxidation to 3 n+, 5 n+, and 6 n+ (n=1–3), decomposition occured with in situ formation of new species. The follow‐up products from 3 and 5 possess two or four reversible redox events pointing to butadiene‐based molecules. However, the dinuclear complex 6 afforded ethynylferrocene under the measurement conditions.  相似文献   

13.
A convenient method to isolate inverted cucurbit[7]uril (iQ[7]) from a mixture of water‐soluble Q[n]s was established by eluting the soluble mixture of Q[n]s on a Dowex (H+ form) column so that iQ[7] could be selected as a ligand for coordination and supramolecular assembly with alkaline earth cations (AE2+) in aqueous HCl solutions in the presence of [ZnCl4]2? and [CdCl4]2? anions as structure‐directing agents. Single‐crystal X‐ray diffraction analysis revealed that both iQ[7]–AE2+–[ZnCl4]2?–HCl and iQ[7]–AE2+–[CdCl4]2?–HCl interaction systems yielded supramolecular assemblies, in which the [ZnCl4]2? and [CdCl4]2? anions presented a honeycomb effect, and this resulted in the formation of linear iQ[7]/AE2+ coordination polymers through outer‐surface interactions of Q[n]s.  相似文献   

14.
N‐Ylide complexes of Ir have been generated by C(sp3)?H activation of α‐pyridinium or α‐imidazolium esters in reactions with [Cp*IrCl2]2 and NaOAc. These reactions are rare examples of C(sp3)?H activation without a covalent directing group, which—even more unusually—occur α to a carbonyl group. For the reaction of the α‐imidazolium ester [ 3 H]Cl, the site selectivity of C?H activation could be controlled by the choice of metal and ligand: with [Cp*IrCl2]2 and NaOAc, C(sp3)?H activation gave the N‐ylide complex 4 ; in contrast, with Ag2O followed by [Cp*IrCl2]2, C(sp2)?H activation gave the N‐heterocyclic carbene complex 5 . DFT calculations revealed that the N‐ylide complex 4 was the kinetic product of an ambiphilic C?H activation. Examination of the computed transition state for the reaction to give 4 indicated that unlike in related reactions, the acetate ligand appears to play the dominant role in C?H bond cleavage.  相似文献   

15.
2-Vinyl pyridine (2-VP) can be initiated by a charge-transfer complex formed by the interaction of aliphatic amines such as n-butylamine (nBA) and carbon tetrachloride (CCl4) in a solvent like NN-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). This article describes the polymerization of 2-VP by n-butylamine (nBA) in the presence of carbon tetrachloride in DMSO at 60°C. The rate of polymerization Rp increases rapidly with carbon tetrachloride (CCl4) up to a concentration of 3.93 mol/L, but for a higher concentration it is almost independent of the carbon tetrachloride concentration; Rp is proportional to [nBA]0.5 and [2-VP]1.5 when [CCl4]>[nBA]. The average rate constant k is 1.03 × 10?5 L/mol s. When [CCl4] < [nBA] the rate constant in terms of [2-VP] was 1.06 × 10?5 s?1 at 60°C and the overall rate constant was 1.035 × 10?5 L/mol s at 60°C.  相似文献   

16.
Metal Complexes with Tetrapyrrole Ligands. 68. Synthesis of Water-Soluble Osmium Porphyrin Complexes The synthesis of osmium tetraphenylporphyrinates with functional groups in the para-position of the phenyl rings is described. By sulfonation of the corresponding para-unsubstituted complex the carbonylosmium(II)-complex [OsCO(TPPS4)H2O]4? or the dioxoosmium(VI)-complex [OsO2(TPPS4)]4? [(TPPS4)6?: hexa-anion of tetrakis(4-sulfonatophenyl)porphyrin] is obtained. The osmochrome complex [Os(TPPS4)(1-Meim)2]4?, which changes to the osmichrome complex [Os(TPPS4)(1-Meim)2]3? in the presence of air, is formed from the dioxo-compound by reduction. These anions are deposited as water-soluble sodium- or as water-insoluble tetraphenylarsonium salts. The novel osmochrome complex Os(TMeCPP)(1-Meim)2 (TMeCPP)2?: [dianion of tetrakis(4-methoxycarbonylphenyl)porphyrin] is transformed by alcaline saponification and precipitation with hydrochloric acid to the corresponding alcali-soluble osmochrome tetracarbonic acid Os(TH4CPP)(1-Meim)2. UV/Vis-, 1H-NMR-spectra and electrophoreses provide insight into the behaviour of the osmiumporphyrinate anions in water.  相似文献   

17.
The sequential reaction of the amino(trimethylsilyl)carbene complex [(CO)5W=C(NH2)C≡CSiMe3] ( 1 ) with nBuLi and [I‐Fe(CO)2Cp] affords the C(carbene)‐N bridged heterobinuclear complex [(CO)5W=C{NHFe(CO)2Cp}C≡CSiMe3] ( 2 ). Desilylation of 1 is achieved by treatment with KF in THF/MeOH. From the reaction of the resulting complex [(CO)5W=C(NH2)C≡CH] ( 3 ) with nBuLi and [I‐Fe(CO)2Cp] two binuclear WFe compounds in a ratio of approximately 1:1 are obtained: the C(carbene)‐C≡C bridged complex 4 and the C(carbene)‐N bridged complex 5 . Repetition of the deprotonation/metallation sequence yields the trinuclear WFe2 complex 6 . One Fe(CO)2Cp fragment in 6 is bonded to the amino group and the other one to the terminal carbon atom of the ethynyl substituent. The analogous reaction of 3 with nBuLi and [Br‐Ni(PMe2Ph)2Mes] gives a ca. 1:1 mixture of two heterobinuclear complexes ( 7 and 8 ). Complex 7 is bridged by the C(carbene)‐C≡C and complex 8 by the C(carbene)‐N fragment. Subsequent reaction of 7 with BuLi and [Br‐Ni(PMe2Ph)2Mes] finally affords the trinuclear WNi2 complex 9 related to 6 . The solid‐state structure of 2 is established by an X‐ray diffraction analysis. The spectroscopic data of the bi‐ and trinuclear complexes indicate electronic communication between the metal centers through the bridging group.  相似文献   

18.
The oscillating reaction involving organic gallic acid (GA), potassium bromate, and a metal ion complex has been reinvestigated. In contrast to other previous reports, this oscillating reaction is catalyzed by the [Fe(phen)n]2+ ion (phen = 1,10-o-phenanthroline, n=1, 2, 3) rather than by the cerium ion. The characteristics of the oscillations depend on the temperature and on the concentrations of the potassium bromate, gallic acid, [Fe(phen)n]2+, and sulfuric acid. A cyclic voltammetric study indicates that the redox potential and the reversibility of the [Fe(phen)n]2+/3+ couple play a major role in catalyzing this oscillating system.  相似文献   

19.
A series of ionic associates based on the platinum(II) chelate of 5‐sulfo‐8‐quinolinol, [Pt(qS)2]2?, and ammonium‐based amphiphiles is described. At variance with the prototypical neutral complex Pt(q)2 (q=8‐quinolinol), these dianionic fluorophores, functionalized at the periphery with sulfonate groups, can be associated by the ionic self‐assembly approach with various ammonium cations, such as (H2 n+1Cn)2Me2N+ (n=12, 16, 18) or complex ammonium cations carrying three Cn carbon chains (n=12, 14, 16) and an additional amide group. Investigations of their luminescence properties in solution, in the solid state, and, when possible, in thin films revealed that the phosphorescence properties in condensed phases are directly correlated to intermolecular interactions between the luminescent [Pt(qS)2]2? centers. Of particular interest is also the formation of a columnar liquid‐crystalline phase around room temperature (between ?25 and +180 °C), as well as the very good film‐forming ability of some of these fluorophores from organic solvents.  相似文献   

20.
[11]Cycloparaphenylene ([11]CPP) selectively encapsulates La@C82 to form the shortest possible metallofullerene–carbon nanotube (CNT) peapod, La@C82?[11]CPP, in solution and in the solid state. Complexation in solution was affected by the polarity of the solvent and was 16 times stronger in the polar solvent nitrobenzene than in the nonpolar solvent 1,2‐dichlorobenzene. Electrochemical analysis revealed that the redox potentials of La@C82 were negatively shifted upon complexation from free La@C82. Furthermore, the shifts in the redox potentials increased with polarity of the solvent. These results are consistent with formation of a polar complex, (La@C82)δ??[11]CPPδ+, by partial electron transfer from [11]CPP to La@C82. This is the first observation of such an electronic interaction between a fullerene pea and CPP pod. Theoretical calculations also supported partial charge transfer (0.07) from [11]CPP to La@C82. The structure of the complex was unambiguously determined by X‐ray crystallographic analysis, which showed the La atom inside the C82 near the periphery of the [11]CPP. The dipole moment of La@C82 was projected toward the CPP pea, nearly perpendicular to the CPP axis. The position of the La atom and the direction of the dipole moment in La@C82?[11]CPP were significantly different from those observed in La@C82?CNT, thus indicating a difference in orientation of the fullerene peas between fullerene–CPP and fullerene–CNT peapods. These results highlight the importance of pea–pea interactions in determining the orientation of the metallofullerene in metallofullerene–CNT peapods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号