首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
In this paper, we study the vertex pursuit game of Cops and Robbers where cops try to capture a robber on the vertices of the graph. The minimum number of cops required to win on a given graph G is the cop number of G. We present asymptotic results for the game of Cops and Robber played on a random graph G(n,p) for a wide range of p = p(n). It has been shown that the cop number as a function of an average degree forms an intriguing zigzag shape. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

3.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In a separate paper, we showed that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. The result was obtained by showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. In this paper, this deterministic result is used to show that the conjecture holds asymptotically almost surely for random d‐regular graphs when d = d(n) ≥ 3.  相似文献   

4.
The game cops and robbers is considered on Cayley graphs of abelian groups. It is proved that if the graph has degreed, then [(d+1)/2] cops are sufficient to catch one robber. This bound is often best possible.  相似文献   

5.
We consider the game of cops and robber played on the Cartesian product of two trees. Assuming the players play perfectly, it is shown that if there are two cops in the game, then the length of the game (known as the 2-capture time of the graph) is equal to half the diameter of the graph. In particular, the 2-capture time of the m×n grid is proved to be .  相似文献   

6.
We theoretically analyze the ‘cops and robber’ game for the first time in a multidimensional grid. It is shown that in an n-dimensional grid, at least n cops are necessary if one wants to catch the robber for all possible initial configurations. We also present a set of cop strategies for which n cops are provably sufficient to catch the robber. Further, we revisit the game in a two-dimensional grid and provide an independent proof of the fact that the robber can be caught even by a single cop under certain conditions.  相似文献   

7.
We study the notion of hypertree width of hypergraphs. We prove that, up to a constant factor, hypertree width is the same as a number of other hypergraph invariants that resemble graph invariants such as bramble number, branch width, linkedness, and the minimum number of cops required to win Seymour and Thomas’s robber and cops game.  相似文献   

8.
We consider the game of Cops and Robbers played on finite and countably infinite connected graphs. The length of games is considered on cop-win graphs, leading to a new parameter, the capture time of a graph. While the capture time of a cop-win graph on n vertices is bounded above by n−3, half the number of vertices is sufficient for a large class of graphs including chordal graphs. Examples are given of cop-win graphs which have unique corners and have capture time within a small additive constant of the number of vertices. We consider the ratio of the capture time to the number of vertices, and extend this notion of capture time density to infinite graphs. For the infinite random graph, the capture time density can be any real number in [0,1]. We also consider the capture time when more than one cop is required to win. While the capture time can be calculated by a polynomial algorithm if the number k of cops is fixed, it is NP-complete to decide whether k cops can capture the robber in no more than t moves for every fixed t.  相似文献   

9.
The game of Cops and Robbers is a very well known game played on graphs. In this paper we will show that minimum order of a graph that needs k cops to guarantee the robber’s capture is increasing in k.  相似文献   

10.
We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph G is called the localization number and is written as ζ(G). We settle a conjecture of Bosek et al by providing an upper bound on the chromatic number as a function of the localization number. In particular, we show that every graph with ζ(G) ≤ k has degeneracy less than 3k and, consequently, satisfies χ(G) ≤ 3ζ(G). We show further that this degeneracy bound is tight. We also prove that the localization number is at most 2 in outerplanar graphs, and we determine, up to an additive constant, the localization number of hypercubes.  相似文献   

11.
Consider the following game of a cop locating a robber on a connected graph. At each turn, the cop chooses a vertex of the graph to probe and receives the distance from the probe to the robber. If she can uniquely locate the robber after this probe, then she wins. Otherwise the robber may either stay put or move to any vertex adjacent to his location other than the probe vertex. The cop’s goal is to minimize the number of probes required to locate the robber, while the robber’s goal is to avoid being located. This is a synthesis of the cop and robber game with the metric dimension problem. We analyse this game for several classes of graphs, including cycles and trees.  相似文献   

12.
We adapt the Gyárfás path argument to prove that t?2 cops can capture a robber, in at most t?1 moves, in the game of Cops and Robbers played in a graph that does not contain the t-vertex path as an induced subgraph.  相似文献   

13.
Directed path-width was defined by Reed, Thomas and Seymour around 1995. The author and P. Hajnal defined a cops-and-robber game on digraphs in 2000. We prove that the two notions are closely related and for any digraph D, the corresponding graph parameters differ by at most one. The result is achieved using the mixed-search technique developed by Bienstock and Seymour. A search is called monotone, in which the robber's territory never increases. We show that there is a mixed-search of D with k cops if and only if there is a monotone mixed-search with k cops. For our cops-and-robber game we get a slightly weaker result: the monotonicity can be guaranteed by using at most one extra cop. On leave from Bolyai Institute, University of Szeged, Hungary. This research has been supported by a Marie Curie Fellowship of the European Community under contract number HPMF-CT-2002-01868 and by OTKA Grants F.030737 and T.34475.  相似文献   

14.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In this paper, we show that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph , which improves upon existing results showing that asymptotically almost surely the cop number of is provided that for some . We do this by first showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. This will also be used in a separate paper on random d‐regular graphs, where we show that the conjecture holds asymptotically almost surely when . © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 396–421, 2016  相似文献   

15.
Acta Mathematicae Applicatae Sinica, English Series - The traditional game of cops and robbers is played on undirected graph. Recently, the same game played on directed graph is getting attention...  相似文献   

16.
We present an expected polynomial time algorithm to generate an unlabeled connected cubic planar graph uniformly at random. We first consider rooted connected cubic planar graphs, i.e., we count connected cubic planar graphs up to isomorphisms that fix a certain directed edge. Based on decompositions along the connectivity structure, we derive recurrence formulas for the exact number of rooted cubic planar graphs. This leads to rooted 3‐connected cubic planar graphs, which have a unique embedding on the sphere. Special care has to be taken for rooted graphs that have a sense‐reversing automorphism. Therefore we introduce the concept of colored networks, which stand in bijective correspondence to rooted 3‐connected cubic planar graphs with given symmetries. Colored networks can again be decomposed along the connectivity structure. For rooted 3‐connected cubic planar graphs embedded in the plane, we switch to the dual and count rooted triangulations. Since all these numbers can be evaluated in polynomial time using dynamic programming, rooted connected cubic planar graphs can be generated uniformly at random in polynomial time by inverting the decomposition along the connectivity structure. To generate connected cubic planar graphs without a root uniformly at random, we apply rejection sampling and obtain an expected polynomial time algorithm. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

17.
We consider several variants of the classical Cops and Robbers game. We treat the version where the robber can move R≥1 edges at a time, establishing a general upper bound of , where α = 1 + 1/R, thus generalizing the best known upper bound for the classical case R = 1 due to Lu and Peng, and Scott and Sudakov. We also show that in this case, the cop number of an n‐vertex graph can be as large as n1 ? 1/(R ? 2) for finite R≥5, but linear in n if R is infinite. For R = 1, we study the directed graph version of the problem, and show that the cop number of any strongly connected digraph on n vertices is O(n(loglogn)2/logn). Our approach is based on expansion. © 2011 Wiley Periodicals, Inc. J Graph Theory.  相似文献   

18.
In the game of Cops and Robbers, a team of cops attempts to capture a robber on a graph G. All players occupy vertices of G. The game operates in rounds; in each round the cops move to neighboring vertices, after which the robber does the same. The minimum number of cops needed to guarantee capture of a robber on G is the cop number of G, denoted c(G), and the minimum number of rounds needed for them to do so is the capture time. It has long been known that the capture time of an n-vertex graph with cop number k is O(nk+1). More recently, Bonato et al. (2009) and Gaven?iak (2010) showed that for k=1, this upper bound is not asymptotically tight: for graphs with cop number 1, the cop can always win within n?4 rounds. In this paper, we show that the upper bound is tight when k2: for fixed k2, we construct arbitrarily large graphs G having capture time at least V(G)40k4k+1.In the process of proving our main result, we establish results that may be of independent interest. In particular, we show that the problem of deciding whether k cops can capture a robber on a directed graph is polynomial-time equivalent to deciding whether k cops can capture a robber on an undirected graph. As a corollary of this fact, we obtain a relatively short proof of a major conjecture of Goldstein and Reingold (1995), which was recently proved through other means (Kinnersley, 2015). We also show that n-vertex strongly-connected directed graphs with cop number 1 can have capture time Ω(n2), thereby showing that the result of Bonato et al. (2009) does not extend to the directed setting.  相似文献   

19.
A dominating set in a graph G is a connected dominating set of G if it induces a connected subgraph of G. The connected domatic number of G is the maximum number of pairwise disjoint, connected dominating sets in V(G). We establish a sharp lower bound on the number of edges in a connected graph with a given order and given connected domatic number. We also show that a planar graph has connected domatic number at most 4 and give a characterization of planar graphs having connected domatic number 3.  相似文献   

20.
This paper studies a class of delivery problems associated with the Chinese postman problem and a corresponding class of delivery games. A delivery problem in this class is determined by a connected graph, a cost function defined on its edges and a special chosen vertex in that graph which will be referred to as the post office. It is assumed that the edges in the graph are owned by different individuals and the delivery game is concerned with the allocation of the traveling costs incurred by the server, who starts at the post office and is expected to traverse all edges in the graph before returning to the post office. A graph G is called Chinese postman-submodular, or, for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for each delivery problem in which G is the underlying graph the associated delivery game is submodular (totally balanced, balanced, respectively). For undirected graphs we prove that CP-submodular graphs and CP-totally balanced graphs are weakly cyclic graphs and conversely. An undirected graph is shown to be CP-balanced if and only if it is a weakly Euler graph. For directed graphs, CP-submodular graphs can be characterized by directed weakly cyclic graphs. Further, it is proven that any strongly connected directed graph is CP-balanced. For mixed graphs it is shown that a graph is CP-submodular if and only if it is a mixed weakly cyclic graph. Finally, we note that undirected, directed and mixed weakly cyclic graphs can be recognized in linear time. Received May 20, 1997 / Revised version received August 18, 1998?Published online June 11, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号