首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed HREM studies on carbon nanotubes (CNTs) synthesized via chemical vapor deposition (CVD) using nanoengineered Fe particles on oxide supports show capped tops and open-ended roots. We demonstrate that the pristine catalyst particle dictates the CNT diameter and number of walls at nucleation. The consecutive inward formation of concentric graphene caps during nucleation constricts and elongates the catalyst particle within the tube core. Continued growth stems from the oxide support.  相似文献   

2.
Carbon nanotubes (CNTs) were synthesized by thermal decomposition of methane at 900 °C using Co–Mo/MgO, Fe–Mo/MgO, and Ni–Mo/MgO catalysts. To obtain metallic nanoparticles, polyoxomolybdate clusters of Co, Ni, and Fe deposited on MgO were thermally decomposed at 700 °С, and the obtained oxides were heated in a carbon-containing atmosphere. The method of transmission electron microscopy (TEM) testified formation of one to ten walled CNTs with the average outer diameter depending on the catalyst used. Raman spectroscopy data confirmed the presence of single-walled CNTs in the samples obtained with Co–Mo/MgO and Fe–Mo/MgO catalysts. The electrochemical properties demonstrated by the obtained materials in supercapacitors are shown to be functions of their structural and compositional features.  相似文献   

3.
Bimetallic Co /Fe catalysts supported on carbon nanotubes( CNTs) were prepared,and niobium( Nb) was added as promoter to the 70 Co ∶30Fe /CNT catalyst. The physicochemical properties of the catalysts were characterized,and the catalytic performances were analyzed at the same operation conditions( H_2 ∶CO( volume ratio) = 2 ∶1,p = 1 MPa,and t = 260 ℃) in a tubular fixed-bed microreactor system. The addition of Nb to the bimetallic catalyst decreases the average size of the oxide nanoparticles and improves the reducibility of the bimetallic catalyst. Evaluation of the catalyst performance in a Fischer-Tropsch reaction shows that the catalyst results in high selectivity to methane,and the selectivity to C_(5+) increased slightly in the bimetallic catalyst unlike that in the monometallic catalysts. The addition of 1% Nb to the bimetallic catalyst increases CO conversion and selectivity to C_(5+). Meanwhile,a decrease in methane selectivity is observed.  相似文献   

4.
The regrowth of carbon nanotubes (CNTs) in a second growth stage after a first growth stage has been completely stopped has been found to be strongly related to the carbon capping present on their catalyst particles. It is shown that the undesirable carbon capping can be prevented from forming or removed and the nanotube growth can be rejuvenated by either control of plasma processing conditions during chemical vapor deposition or by inserting a room-temperature sputter etching process. The ability to cause sequential growth stages to take place in different directions makes it possible for us to clearly compare the occurrence and extent of CNT regrowth. Such a CNT regrowth process and understanding of controlling parameters can enable the creation of new nanowire configurations that could potentially be used for applications such as sharply bending nanointerconnections, nanosprings, bent AFM nanoprobes, or nanobarcodes.  相似文献   

5.
An extensive study of Fischer-Tropsch (FT) synthesis on cobalt nano particles supported on γ-alumina and carbon nanotubes (CNTs) catalysts is reported.20 wt% of cobalt is loaded on the supports by impregnation method.The deactivation of the two catalysts was studied at 220 C,2 MPa and 2.7 L/h feed flow rate using a fixed bed micro-reactor.The calcined fresh and used catalysts were characterized extensively and different sources of catalyst deactivation were identified.Formation of cobalt-support mixed oxides in the form of xCoO yAl2O3 and cobalt aluminates formation were the main sources of the Co/γ-Al2O3 catalyst deactivation.However sintering and cluster growth of cobalt nano particles are the main sources of the Co/CNTs catalyst deactivation.In the case of the Co/γ-Al2O3 catalyst,after 720 h on stream of continuous FT synthesis the average cobalt nano particles diameter increased from 15.9 to 18.4 nm,whereas,under the same reaction conditions the average cobalt nano particles diameter of the Co/CNTs increased from 11.2 to 17.8 nm.Although,the initial FT activity of the Co/CNTs was 26% higher than that of the Co/γ-Al2O3,the FT activity over the Co/CNTs after 720 h on stream decreased by 49% and that over the Co/γ-Al2O3 by 32%.For the Co/γ-Al2O3 catalyst 6.7% of total activity loss and for the Co/CNTs catalyst 11.6% of total activity loss cannot be recovered after regeneration of the catalyst at the same conditions of the first regeneration step.It is concluded that using CNTs as cobalt catalyst support is beneficial in carbon utilization as compared to γ-Al2O3 support,but the Co/CNTs catalyst is more susceptible for deactivation.  相似文献   

6.
崔超婕  骞伟中  魏飞 《物理化学学报》2011,27(10):2462-2468
对水促进Co/Mo/Al2O3催化剂裂解乙烯生长碳纳米管(CNTs)的研究发现,通入体积分数(φ)为0.6%的水蒸汽在1h内可将CNTs的生长倍率从3.7 g·g-1提高至70 g·g-1.水的作用在于恢复被无定形碳包覆的催化剂颗粒的活性,水的加入量由于其积碳(促进同体碳生成)和消碳(去除固体碳)的竞争作用而存在最佳值.不同反应时间下乙烯的转化率与有效催化剂含量的分析表明,在CNTs生长后期,水的催化促进作用减弱.将催化剂的相对活性与CNT聚团的相对密度关联发现,反应后期的CNTs主要在聚团内部缠绕生长,催化剂被包覆失活.拉曼测试与差热热重分析表明,生长阻力导致所得CNTs缺陷增多,CNT聚团密度变化与CNT缺陷间存在对应关系.聚团内外CNTs的生长阻力不同,生长倍率不同,导致产品纯度不均匀.  相似文献   

7.
An understanding of the growth mechanism of carbon nanotubes (CNTs) is very important for the control of their structures, which in turn will be the basis for their further theoretical studies and applications. On the basis of high-resolution transmission electron microscopy observations of the initial nucleation of CNTs, the following deductions are made: (1) the nucleation of single-walled carbon nanotubes (SWNTs) and double-walled carbon nanotubes (DWNTs) starts at a low-temperature zone in front of the reaction zone; (2) the addition of sulfur results in localized liquid zones on the surface of big catalyst particles as the initial nucleation sites; (3) a temperature gradient is necessary to realize the role of sulfur in the structure of CNTs; and (4) the shell number of CNTs can be changed at the nucleation and growth stages. On the basis of the above, a growth model for the formation of SWNTs and DWNTs is proposed, which might open up the possibility of controlling the structure of CNTs.  相似文献   

8.
催化剂对纳米聚团床法制备的纳米碳材料形貌的影响   总被引:3,自引:0,他引:3  
 在纳米聚团床中用催化化学气相沉积法批量制备了碳纳米管,研\r\n究了过渡金属催化剂对碳纳米管形貌和产量的影响.实验结果表明,含\r\n铁催化剂的活性较低,产率较低,但产品质量较好;含镍催化剂的活性\r\n较高,产率较高,但产品质量较差;在钴催化剂作用下发现了一种新型\r\n的针状纳米碳材料.用含载体较少的铁催化剂可以得到纯度较高且微观\r\n结构较好的碳纳米管,但产率较低;不含任何载体的纯镍催化剂则不能\r\n得到碳纳米管.适宜的催化剂组成、催化剂活性点的均匀分布和裂解速\r\n度的控制等构成了纳米聚团床大批量制备碳纳米管技术的关键.  相似文献   

9.
Chemical vapor deposition (CVD) utilizing metal cluster nanoparticle catalysts is commonly used to synthesize carbon nanotubes (CNT), with oxygen-containing species such as water or alcohol included in the feedstock for enhanced yield. However, the etching effect of these additives on the growth mechanism has rarely been investigated, despite evidence suggesting that etching potentially affects the chirality distribution of product CNTs. We used quantum chemical methods to study how water-based etchant radicals (OH and H) may enhance the chiral selectivity during CVD growth using CNT cap models. Chemical reactivities of the caps with the etchant radicals were evaluated using density functional theory (DFT). It was found that the reactivities on the cap edges correlate with the chirality of the caps. These results suggest that proper selection of etchant species can provide opportunities for selective chirality control of the product CNTs. © 2018 Wiley Periodicals, Inc.  相似文献   

10.
碳纳米管独特的几何和电子结构使其具有丰富优异的性质,因此在过去的二十余年备受研究者的关注。然而,碳纳米管结构的多样性成为其从实验室走到产业化的最大阻碍,结构决定性质,制备决定未来,完善的结构控制制备技术将成为碳纳米管基础研究和产业化应用中至关重要的一环。本文首先对碳纳米管的结构进行描述,然后综述了碳纳米管的结构可控制备方法和溶液纯化分离技术,提出未来理想的碳纳米管制备之路是将碳纳米管精细结构控制方法与宏量制备技术相结合,在降低碳纳米管生产成本的同时,提高其纯度,并建立碳纳米管产品的标准。最后,展望了碳纳米管的杀手锏级应用和该领域的机遇和挑战。  相似文献   

11.
We discuss the rapid growth of films and lithographically templated microstructures of vertically aligned small-diameter multiwalled carbon nanotubes (VA-MWNTs), by atmospheric-pressure thermal chemical vapor deposition (CVD) of C2H4/H2/Ar on a Fe/Al2O3 catalyst film deposited by electron beam evaporation. The structures grow to 1 mm height in 15 min and reach close to 2 mm in 60 min. The growth rate and final height of CNT microstructures grown from catalyst patterns depend strongly on the local areal density of catalyst, representing a reverse analogue of loading effects which occur in plasma etching processes. Abrupt transitions between areas of micrometer-thick tangled CNT films and millimeter-scale aligned CNT structures are manipulated by changing the duration of pretreatment by H2/Ar prior to introduction of C2H4 and by changing the configuration of the substrate sample in the furnace tube. This demonstrates that the flow profile over the sample mediates the supply of reactants to the catalyst and that pretreatment using H2 significantly affects the initial activity of the catalyst.  相似文献   

12.
《Chemical physics letters》2006,417(1-3):179-184
Single-walled carbon nanotubes (CNTs) were synthesized from carbon monoxide and iron catalyst nanoparticles by two different aerosol methods. The catalyst particles were produced by physical vapor nucleation using a resistively heated iron wire (hot wire generator) and by thermal decomposition of ferrocene vapor. The essential role of etching agents (CO2 and H2O) in the CNT formation process was demonstrated. An addition of small amounts of CO2 and H2O vapor in the reactor resulted in an increase in CNT length. Also, the CO2 introduction was found to decrease the minimum temperature for CNT synthesis from 890 °C to below 600 °C.  相似文献   

13.
Unique DNA‐promoted Pd nanocrystals on carbon nanotubes (Pd/DNA–CNTs) are synthesized for the first time, in which through its regularly arranged PO43? groups on the sugar–phosphate backbone, DNA directs the growth of ultrasmall Pd nanocrytals with an average size of 3.4 nm uniformly distributed on CNTs. The Pd/DNA–CNT catalyst shows much more efficient electrocatalytic activity towards oxygen reduction reaction (ORR) with a much more positive onset potential, higher catalytic current density and better stability than other Pd‐based catalysts including Pd nanocrystals on carbon nanotubes (Pd/CNTs) without the use of DNA and commercial Pd/C catalyst. In addition, the Pd/DNA–CNTs catalyst provides high methanol tolerance. The high electrocatalytic performance is mainly contributed by the ultrasmall Pd nanocrystal particles grown directed by DNA to enhance the mass transport rate and to improve the utilization of the Pd catalyst. This work may demonstrate a universal approach to fabricate other superior metal nanocrystal catalysts with DNA promotion for broad applications in energy systems and sensing devices.  相似文献   

14.
Carbon nanotubes (CNTs) grown by chemical vapor decomposition of ethylene on alumina- and silica-supported Fe–Co bimetallic catalysts were examined before and after purification encompassing chemical oxidation treatment in 3 M NaOH and 3 M HNO3 solutions, sequentially. Thermal properties were investigated and correlated with structural changes followed by TEM, X-ray diffraction and Raman spectroscopy characterization. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) were employed simultaneously in the regime of TPO and TPH, in diluted flow of either O2 or H2. TG revealed almost complete burning of both refined CNT samples in diluted O2, indicating the efficiency of the purification method used to remove the catalyst remains. However, different trends and significant magnitudes of changes in the heat of combustion demonstrate changes in CNTs stability after purification as a function of the catalyst support type. This is the consequence of changes in carbon type, CNTs order degree and morphology, as well as the degree of functionalization, which have their own effects on the CNTs thermal stability.  相似文献   

15.
This paper studies the impact of structure of cobalt catalysts supported on carbon nanotubes(CNT) on the activity and product selectivity of Fischer-Tropsch synthesis(FTS) reaction.Three types of CNT with average pore sizes of 5,11,and 17 nm were used as the supports.The catalysts were prepared by selectively impregnating cobalt nanoparticles either inside or outside CNT.The TPR results indicated that the catalyst with Co particles inside CNT was easier to be reduced than those outside CNT,and the reducibility of cobalt oxide particles inside the CNT decreased with the cobalt oxide particle size increasing.The activity of the catalyst with Co inside CNT was higher than that of catalysts with Co particles outside CNT.Smaller CNT pore size also appears to enhance the catalyst reduction and FTS activity due to the little interaction between cobalt oxide with carbon and the enhanced electron shift on the non-planar carbon tube surface.  相似文献   

16.
The functions and structures of Mo/Ni/MgO catalysts in the synthesis of carbon nanotubes (CNTs) have been investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Thin 2-5-walled CNTs with high purities (over 90%) have been successfully synthesized by catalytic decomposition of CH(4) over Mo/Ni/MgO catalysts at 1073 K. It has been found that the yield of CNTs as well as the outer diameter or thickness correlates well with the contents of these three elements. The three components Mo, Ni, and MgO are all necessary to synthesize the thin CNTs at high yields since no catalytic activity was observed for CNT synthesis when one of these components was not present. The outer diameter of the CNTs increases from 4 to 13 nm and the thickness of graphene layers also increases with increasing Mo content at a fixed Ni content, while the inner diameter stays at 2-3 nm regardless of their contents. Furthermore, the average outer diameter is in good agreement with the average particle size of metal catalyst. That is, the thickness or the outer diameter can be controlled by selecting the composition of the Mo/Ni/MgO catalysts. XRD analyses have shown that Mo and Ni form a Mo-Ni alloy before CNT synthesis, while the Mo-Ni alloy phase is separated into Mo carbide and Ni. These alloy particles are supported on MgO cubic particles 15-20 nm in width. It has been found that only small Mo-Ni alloy particles 2-16 nm in size catalyze CNT synthesis, with larger particles over 15 nm exhibiting no activity. Mo carbide and Ni should play different roles in the synthesis of the thin CNTs, in which Ni is responsible for the dissociation of CH(4) into carbon and Mo(2)C works as a carbon reservoir.  相似文献   

17.
通过向两种金属酞菁的混合物添加一定量的硫粉,在800~950 ℃裂解合成了大面积的直立碳纳米管。采用场发射扫描电镜(FE-SEM)、高分辨透射电镜(HRTEM)和拉曼光谱对产物进行了观察和表征,结果显示:所合成的碳纳米管(直径为15~35 nm,长度为200~800 nm)管身平直,具有很好的石墨化程度,且杂质很少。采用两种金属酞菁((M(Ⅱ)Pc, M=Fe, Co))进行混合裂解时,既可以提供碳源,而且可以产生相当均匀的催化剂颗粒,有利直立碳纳米管的沉积。这种将两种酞菁进行固相混合裂解的方法,相当安全高效,有利于大规模生产直立碳纳米管。  相似文献   

18.
It is found that carbon nanotubes (CNTs) obtained by the catalytic pyrolysis of ethanol vapor with Ni-, Co-, and Fe catalysts vary in their ability to oxidative modification and, finally, in adsorption capacity, dispersion, and the texture of the synthesized powders. The adsorption capacity of the modified CNTs varies in the order Ni > Co > Fe. The material obtained with a Ni catalyst has good bulk and hydrodynamic properties, which is essential for use in chromatographic columns. Using a Fe catalyst, a loose, cotton wool-like product was obtained that is unsuitable for column chromatography, and with a Co catalyst, a material with intermediate properties was synthesized. Differences in the physicochemical properties of CNTs are related to the morphology of the products.  相似文献   

19.
A facile, scalable route to new nanocomposites that are based on carbon nanotubes/heteroatom‐doped carbon (CNT/HDC) core–sheath nanostructures is reported. These nanostructures were prepared by the adsorption of heteroatom‐containing ionic liquids on the walls of CNTs, followed by carbonization. The design of the CNT/HDC composite allows for combining the electrical conductivity of the CNTs with the catalytic activity of the heteroatom‐containing HDC sheath layers. The CNT/HDC nanostructures are highly active electrocatalysts for the oxygen reduction reaction and displayed one of the best performances among heteroatom‐doped nanocarbon catalysts in terms of half‐wave potential and kinetic current density. The four‐electron selectivity and the exchange current density of the CNT/HDC nanostructures are comparable with those of a Pt/C catalyst, and the CNT/HDC composites were superior to Pt/C in terms of long‐term durability and poison tolerance. Furthermore, an alkaline fuel cell that employs a CNT/HDC nanostructure as the cathode catalyst shows very high current and power densities, which sheds light on the practical applicability of these new nanocomposites.  相似文献   

20.
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号