首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High pressure thermal (HPT) processing is a candidate technology for the production of safe and stable food. However, little is known about the effect of HPT or high hydrostatic pressure (HHP) treatments at ambient temperature on the variability of times to detect growth from individual spores. We investigated this effect by treating Clostridium botulinum type E spores with HHP (200–600?MPa, 20°C) and HPT (600?MPa, 80°C and 800?MPa, 60°C). Our results indicate that the mean detection times increase and the frequency distribution shifts toward longer times when HHP treatment intensity is increased. HPT treatments result in a highly scattered distribution. In contrast, pressure levels ≤300?MPa decrease detection times and heterogeneity of their distribution, which could lead to an increase in the potential risk originating from C. botulinum type E spores. Data provided here could help to refine risk assessment regarding this important food intoxicator.  相似文献   

2.
We report the effect of using moderate hydrostatic pressure, 40–140?MPa, at moderate temperature (38–58°C) to inactivate Bacillus subtilis spores in McIlvaine's citric phosphate buffer at pH 6. We have investigated several parameters: pressure applied, holding time, pressure cycling, and temperature. The kinetics of spore inactivation is reported. The results show that spore inactivation is exponentially proportional to the time the sample is exposed to pressure. Spore germination and inactivation occur at the hydrostatic pressures/temperature combinations we explored. Cycling the pressure while keeping the total time at high pressure constant does not significantly increase spore inactivation. We show that temperature increases spore inactivation at two different rates; a slow rate below 33°C, and at a more rapid rate at higher temperatures. Increasing pressure leads to an increase in spore inactivation below 95?MPa; however, further increases in pressure give a similar rate kill. The time dependence of the effect of pressure is consistent with the first-order model (R2?>?0.9). The thermal resistance values (ZT) of B. subtilis spores are 30°C, 37°C, and 40°C at 60, 80, 100?MPa. The increase in ZT value at higher pressures indicates lower temperature sensitivity. The pressure resistance values (ZP) are 125, 125 and 143?MPa at 38°C, 48°C, and 58°C. These ZP values are lower than those reported for B. subtilis spores in the literature, which indicates higher sensitivity at pressures less than about 140?MPa. We show that at temperatures <60°C, B. subtilis spores are inactivated at pressures below 100?MPa. This finding could have implications for the design of the sterilization equipment.  相似文献   

3.
Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.  相似文献   

4.
Alicyclobacillus acidoterrestris is a spore-forming bacterium, causing spoilage of juices. The spores of these bacteria have the ability to survive in the typical conditions used for thermal pasteurization. Therefore, the use of other techniques such as high hydrostatic pressure is considered for their inactivation. The effect of hydrostatic pressure of 200–500 MPa, at temperatures 4–50 °C for 15 min, on the dynamics of germination of A. acidoterrestris spores in apple juice and pH 4 buffer was studied. To estimate the share of germinated spores, the method of determining the optical density at a wavelength of 660 nm (OD660) was used. Parameters of hydrostatic pressure treatment used in this work affected the dynamics of germination of A. acidoterrestris spores in apple juice, and the temperature had the greatest effect. The results indicate that nutrients present in apple juice can promote the germination of A. acidoterrestris spores.  相似文献   

5.
Supercritical carbon dioxide (SC-CO2) is a novel method for food pasteurization, but there is still room for improvement in terms of the process shortening and its use in products with high oil content. This study addressed the effect of high power ultrasound (HPU) on the intensification of the SC-CO2 inactivation of E. coli and B. diminuta in soybean oil-in-water emulsions. Inactivation kinetics were obtained at different pressures (100 and 350 bar), temperatures (35 and 50 °C) and oil contents (0, 10, 20 and 30%) and were satisfactorily described using the Weibull model. The experimental results showed that for SC-CO2 treatments, the higher the pressure or the temperature, the higher the level of inactivation. Ultrasound greatly intensified the inactivation capacity of SC-CO2, shortening the process time by approximately 1 order of magnitude (from 50 to 90 min to 5–10 min depending on the microorganism and process conditions). Pressure and temperature also had a significant (p < 0.05) effect on SC-CO2 + HPU inactivation for both bacteria, although the effect was less intense than in the SC-CO2 treatments. E. coli was found to be more resistant than B. diminuta in SC-CO2 treatments, while no differences were found when HPU was applied. HPU decreased the protective effect of oil in the inactivation and similar microbial reductions were obtained regardless of the oil content in the emulsion. Therefore, HPU intensification of SC-CO2 treatments is a promising alternative to the thermal pasteurization of lipid emulsions with heat sensitive compounds.  相似文献   

6.
In this study, liquid–liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor–stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by ∼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid–liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.  相似文献   

7.
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model.Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C. butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A. niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C. butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A. niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion’s stability.  相似文献   

8.
The application of high pressure (HP) provides an opportunity for the non-thermal preservation of high-quality foods, whereas highly resistant bacterial endospores play an important role. It is known that the germination of spores can be initiated by the application of HP. Moreover, the resistance properties of spores are highly dependent on their physiological states, which are passed through during the germination. To distinguish between different physiological states and to detect the amount of germinated spores after HP treatments, two fluorescence-based methods were applied. A flow cytometric method using a double staining with SYTO 16 as an indicator for germination and propidium iodide as an indicator for membrane damage was used to detect different physiological states of the spores. During the first step of germination, the spore-specific dipicolinic acid (DPA) is released [P. Setlow, Spore germination, Curr. Opin. Microbiol. 6 (2003), pp. 550–556]. DPA reacts with added terbium to form a distinctive fluorescent complex. After measuring the fluorescence intensity at 270 nm excitation wavelength in a fluorescence spectrophotometer, the amount of germinated spores can be determined. Spores of Bacillus subtilis were treated at pressures from 150 to 600 MPa and temperatures from 37 °C to 60 °C in 0.05 M ACES buffer solution (pH 7) for dwell times of up to 2 h. During the HP treatments, inactivation up to 2log 10 cycles and thermal sensitive populations up to 4log 10 cycles could be detected by plate counts. With an increasing number of thermal sensitive spores, an increased proportion of spores in germinated states was detected by flow cytometry. Also the released amount of DPA increased during the dwell times. Moreover, a clear pressure-temperature-time-dependency was shown by screening different conditions. The fluorescence-based measurement of the released DPA can provide the opportunity of an online monitoring of the germination of spores under HP inside the HP vessel. Implementation can be done using diamond anvil cells, units with inspection glasses or by inserting an optical fiber into the HP vessel. The analytical methods used can help to understand the complex mechanism of germination and inactivation of bacterial spores. Due to its universal, process-independent character, the application of these methods is feasible for established and emerging technologies.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(3):1010-1017
Emulsifier free emulsion was developed with a new patented technique for food and cosmetic applications. This emulsification process dispersed oil droplets in water without any emulsifier. Emulsions were prepared with different vegetable oil ratios 5%, 10% and 15% (v/v) using high frequency ultrasounds generated by piezoelectric ceramic transducer vibrating at 1.7 MHz. The emulsion was prepared with various emulsification times between 0 and 10 h. Oil droplets size was measured by laser granulometry. The pH variation was monitored; electrophoretic mobility and conductivity variation were measured using Zêtasizer equipment during emulsification process. The results revealed that oil droplets average size decreased significantly (p < 0.05) during the first 6 h of emulsification process and that from 160 to 1 μm for emulsions with 5%, 10% and from 400 to 29 μm for emulsion with 15% of initial oil ratio.For all tested oil ratios, pH measurement showed significant decrease and negative electrophoretic mobility showed the accumulation of OH at oil/water interface leading to droplets stability in the emulsion. The conductivity of emulsions showed a decrease of the ions quantity in solution, which indicated formation of positive charge layer around OH structure. They constitute a double ionic layer around oil particles providing emulsion stability. This study showed a strong correlation between turbidity measurement and proportion of emulsified oil.  相似文献   

10.
A coarse-grained W–25% Cu alloy is subjected to high-pressure torsion (HPT) at room temperature to different strains. Evolution of the microstructure during HPT processing is studied using X-ray diffraction analysis, scanning and transmission electron microscopy. It is demonstrated that HPT processing results in fragmentation of the tungsten particles and the formation of a 5–15?nm grain size nanostructure at equivalent strains of ≥256 (saturation). It is shown that the nanostructured W–25% Cu is thermostable up to 500°C, with grain growth up to 50?nm at 720°C. During HPT processing, the lattice parameter of the copper and tungsten was found to increase and decrease, respectively, with increased level of equivalent strain. This is proposed to occur through the interdiffusion of copper atoms into tungsten grains and tungsten atoms into copper grains, as suggested by energy-dispersive X-ray analysis of the individual grains. The formation of a limited solid solution is considered and possible mechanisms for this effect discussed.  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(4):1265-1274
This study reports on the process optimization of ultrasound-assisted, food-grade oil–water nanoemulsions stabilized by modified starches. In this work, effects of major emulsification process variables including applied power in terms of power density and sonication time, and formulation parameters, that is, surfactant type and concentration, bioactive concentration and dispersed-phase volume fraction were investigated on the mean droplet diameter, polydispersity index and charge on the emulsion droplets. Emulsifying properties of octenyl succinic anhydride modified starches, that is, Purity Gum 2000, Hi-Cap 100 and Purity Gum Ultra, and the size stability of corresponding emulsion droplets during the 1 month storage period were also investigated. Results revealed that the smallest and more stable nanoemulsion droplets were obtained when coarse emulsions treated at 40% of applied power (power density: 1.36 W/mL) for 7 min, stabilized by 1.5% (w/v) Purity Gum Ultra. Optimum volume fraction of oil (medium chain triglycerides) and the concentration of bioactive compound (curcumin) dispersed were 0.05 and 6 mg/mL oil, respectively. These results indicated that the ultrasound-assisted emulsification could be successfully used for the preparation of starch-stabilized nanoemulsions at lower temperatures (40–45 °C) and reduced energy consumption.  相似文献   

12.

In this work, we studied the behavior of the Nd–Dy–Fe–Co–Cu–B alloy for permanent magnets under high pressure torsion (HPT). In the initial state of the studied alloy, it mainly contained the crystalline phase τ1 (Nd, Dy)2(Fe, Co, Cu) 14B. After HPT at room temperature (THPT = 30°C), a mixture of an amorphous phase with nanocrystalline inclusions of the τ1 phase is observed in the alloy. In the equilibrium phase diagram, this state is equivalent to a mixture of the τ1 phase with the melt at the temperature Teff= ∼1100°C. The thus determined Teff value is called the effective temperature. When the THPT temperature of the HPT treatment increases to 300 and 400°C, the amorphous phase disappears, and the Fe2B and γ-Fe phases appear instead. In the equilibrium phase diagram, this state is equivalent to a mixture of phases τ1+ Fe2B + γ-Fe, which is observed in the temperature range from ∼950 to ∼1050°C. We explain this phenomenon by the fact that with an increase in the HPT temperature THPT, the rate of formation of defects during deformation remains constant, but the rate of their thermal relaxation (annihilation) increases. This is equivalent to decrease in the effective temperature Teff in the equilibrium phase diagram. The previously predicted decrease in Teff with an increase in THPT is observed for the first time.

  相似文献   

13.
Ultrasound, alone or in combination with natural antimicrobials, is a novel food processing technology of interest to replace traditional food decontamination methods, as it is milder than classical sterilisation (heat treatment) and maintains desirable sensory characteristics. However, ultrasound efficacy can be affected by food structure/composition, as well as the order in which combined treatments are applied. More specifically, treatments which target different cell components could result in enhanced inactivation if applied in the appropriate order. The microbial properties i.e. Gram positive/Gram negative can also impact the treatment efficacy.This work presents a systematic study of the combined effect of ultrasound and nisin on the inactivation of the bacteria Listeria innocua (Gram positive) and Escherichia coli (Gram negative), at a range of cavitation conditions (44, 500, 1000 kHz). The order of treatment application was varied, and the impact of system structure was also investigated by varying the concentration of Xanthan gum used to create the food model systems (0 – 0.5% w/v). Microbial inactivation kinetics were monitored, and advanced microscopy and flow cytometry techniques were utilised to quantify the impact of treatment on a cellular level.Ultrasound was shown to be effective against E. coli at 500 kHz only, with L. innocua demonstrating resistance to all frequencies studied. Enhanced inactivation of E. coli was observed for the combination of nisin and ultrasound at 500 kHz, but only when nisin was applied before ultrasound treatment. The system structure negatively impacted the inactivation efficacy. The combined effect of ultrasound and nisin on E. coli was attributed to short-lived destabilisation of the outer membrane as a result of sonication, allowing nisin to penetrate the cytoplasmic membrane and facilitate cell inactivation.  相似文献   

14.
The overall efficiency of an existing scale-up pressure-assisted thermal sterilization (PATS) unit was investigated with regards to inactivation of Geobacillus stearothermophilus spores suspended in pumpkin soup. The PATS unit is a double pipe heat exchanger in which the soup is pumped into its inner high pressure tube and constrained by two high pressure valves, while steam is continuously passed through the annular region to heat the content. The technology is based on pressure generation by thermal expansion of the liquid in an enclosure. In this work, the addition of an air line to push the treated liquid food out of the existing PATS unit has improved the overall quality of the treated samples, as evidenced by achieving higher log reduction of the spores. Compared with thermal processing, the application of PATS shows the potential for lowering the thermal treatment temperature, offering improved food quality.  相似文献   

15.
Abstract

High hydrostatic pressure treatment is regarded as a possible alternative process for food preservation. One of the primary considerations for industrial applications is the ability of this technique to destroy pathogenic microorganisms. The inactivation of microorganism populations after high pressure treatment is well described, but their residual pathogenicity is less documented. This study compared the virulence of Listeria monocytogenes scott A before and after high pressure treatments. The pressurized samples were composed of 1 ml of Listeria monocytogenes culture diluted into 9 ml of buffer. Two buffers are used: phosphate buffer (pH 7) and citrate buffer (pH 5.6).

The virulence of cells is estimated by their association and invasion capacities to Hela cells. These characteristics of pathogenity were compared between untreated and pressurized cells (400 MPa, 10min, in citrate buffer) or (600 MPa, 10min, in phosphate buffer). These results showed that, after treatment in citrate buffer, the treated cells lost their association and invasion capacities. However, in a phosphate buffer, treated cells have lose their invasion properties, but retain their association capacities to Hela cells. These results showed that the inactivation of Listeria monocytogenes population involve a loss of their pathogenic properties. However, the conservation of association capacities of some inactivated cells show that these cells seem to continue to express adhesion molecules and, in certain conditions, can reestablish their multiplication properties.  相似文献   

16.
The effect of three alcohols as representative of ointment and cream components on the radiation sensitivity of anoxic Bacillus pumilus spores was determined in order to understand the radiation-induced inactivation of spores when suspended in non-aqueous milieux. Bacillus pumilus spores mounted on aluminium silicate powder were suspended in the appropriate alcohol, deoxygenated and 60Co gamma-irradiated. Responses ranged between that for buffered suspensions alone to approximately twice that value. Concentrations of the alcohols in buffer, below their solubility limits, did not produce responses significantly different from that characteristic of anoxic buffer alone.  相似文献   

17.
Abstract

Conidiospores from Penicillium expansum and ascospores from Eurotium repens were exposed to high hydrostatic pressure in isotonic salt solution, apple and broccoli juice. Kinetic measurements were done at 4,25 and 40 or 45°C. The shape of the inactivation curves was strongly dependent on the temperature. Asco- and conidiospores were found to behave in a contrary way. The fastest reduction for conidiospores was found at 4°C, for ascospores best inactivation was achieved at 45°C. High pressure inactivation of spores in apple or broccoli juice was nearly the same as in isotonic salt solution.  相似文献   

18.
The effect of 10% pre-ageing deformation on the early precipitation behaviour in an AA6060 Al–Mg–Si alloy aged 10?min at 190°C was investigated by high-resolution transmission electron microscopy (HRTEM) in ?100?Al projections. The precipitate nucleation was heterogeneous since all precipitates were found to grow on dislocation lines. The pre-ageing deformation suppresses growth of Gunier–Preston zones and β″ phase. The resulting precipitates are still largely coherent with the aluminium matrix. They appear with two main morphologies; one consists of independent, small cross-sections arising from needles with disordered β′ and B′ structures. The other morphology is a much more continuous decoration where precipitates have elongated and conjoined cross-sections and where a particular precipitate phase could not be determined. All precipitates in this work were found to contain a common near-hexagonal sub-cell (SC) with projected bases a?=?b?≈?0.4?nm. This strongly indicates that they are built over the same Si network, which recently has been demonstrated to exist in all precipitates in the Al–Mg–Si(–Cu) system. For the discrete morphology type the network has one hexagonal base vector parallel to or very near a ?510?Al direction. For the continuous type, one base vector falls along a ?100?Al direction. This orientation of the network is different from previous studies of ternary Al–Mg–Si alloys and must be a direct consequence of the deformation.  相似文献   

19.
Response surface methodology (RSM) was employed for the first time to optimize high pressure extraction (HPE) conditions of bioactive compounds from pansies, namely: pressure (X1: 0–500?MPa), time (X2: 5–15?min) and ethanol concentration (X3: 0–100%). Consistent fittings using second-order polynomial models were obtained for flavonoids, tannins, anthocyanins, total reducing capacity (TRC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity. The optimum extraction conditions based on combination responses for TRC, tannins and anthocyanins were: X1?=?384?MPa, X2?=?15?min and X3?=?35% (v/v) ethanol, shortening the extraction time when compared to the classic method of stirring (approx. 24?h). When the optimum extraction conditions were applied, 65.1?mg of TRC, 42.8?mg of tannins and 56.15?mg of anthocyanins/g dried flower were obtained. Thus, HPE has shown to be a promising technique to extract bioactive compounds from pansies, by reducing the extraction time and by using green solvents (ethanol and water), for application in diverse industrial fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号