首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have investigated the formation of threadlike micelles consisting of anionic surfactants and certain additives in aqueous solution. Threadlike micelles long enough to be entangled with each other were formed in a clear aqueous solution of two anionic surfactants, sodium hexadecyl sulfate and sodium tetradecyl sulfate. These solutions also contained pentylammonium bromides or p-toluidine halides and exhibited remarkable viscoelasticity. Because the molar ratio of surfactants to cationic additives in these micelles seemed close to unity, they formed 1:1 stoichiometric complexes between surfactant anions and additive cations, as previously found in systems of cationic surfactants such as hexadecyltrimethylammonium bromide and sodium salicylate. The viscoelastic behavior of these anionic threadlike micellar systems was adequately described by a simple Maxwell element with a single relaxation time and strength, as in many similar cationic systems.  相似文献   

2.
We investigate the construction of long, stable hybrid threadlike micelles consisting of polyelectrolytes and oppositely charged surfactants in aqueous solution and examine the physicochemical features such as their structure and viscoelastic behavior in aqueous solution. The most important point for their construction is the careful control of interactions, especially electrostatic interactions, caused between the surfactants and polyelectrolytes. Incorporated polyelectrolytes are fully extended in these hybrid threadlike micelles irrespective of the molecular weight of the polymer. The viscoelastic behavior of the hybrid threadlike micellar solution is similar to that of ordinary threadlike micellar systems consisting of low‐molecular‐weight substances. However, the inclusion of polymers in the micelles causes differences in their mechanical properties.  相似文献   

3.
A small angle neutron scattering study revealed that polyelectrolytes, sodium salts of partially sulfonated polystyrenes with narrow distributed molar masses of Mn = 27 x 10(3) and 340 x 10(3), which were incorporated into hybrid threadlike micelles formed with cetyltrimethylammonium bromide in aqueous (deuterium oxide) solutions at a quiescent state, behaved as rigid rods with lengths of 16 and 200 nm and the same radius of 2.3 approximately 2.4 nm, respectively. Under strong shear flows at shear rates much higher than the reciprocal of the mechanical relaxation time for the solution, the formed hybrid threadlike micelles were highly orientated to the shear flow axis owing to the generation of a shear induced liquid crystalline phase. The polyelectrolytes incorporated into the highly orientated micelle also maintained essentially the same conformation as those in the randomly orientated micelles in a quiescent state even at high shear rates.  相似文献   

4.
Drag-reducing (DR) surfactant fluids based on threadlike micelles are known to suffer from poor heat-transfer capabilities. Accordingly, the use of these fluids is limited to recirculating systems in which heat exchange is not important. Here, we show for the first time that light-responsive threadlike micelles can offer a potential solution to the above problem. The fluids studied here are composed of the cationic surfactant Ethoquad O/12 PG (EO12) and the sodium salt of trans-ortho-methoxycinnamic acid (OMCA). Initially, these fluids contain numerous threadlike micelles and, in turn, are strongly viscoelastic and effective at reducing drag (up to 75% DR). Upon exposure to UV light, OMCA is photoisomerized from trans to cis. This causes the micelles to shorten considerably, as confirmed by cryo-transmission electron microscopy (cryo-TEM). Because of the absence of long micelles, the UV-irradiated fluid shows lower viscoelasticity and much lower DR properties; however, its heat-transfer properties are considerably superior to the initial fluid. Thus, our study highlights the potential of switching off the DR (and in turn enhancing heat-transfer) at the inlet of a heat exchanger in a recirculating system. While the fluids studied here are not photoreversible, an extension of the above concept would be to subsequently switch on the DR again at the exit of the heat exchanger, thus ensuring an ideal combination of DR and heat-transfer properties.  相似文献   

5.
The crossing dynamics at an entanglement point of surfactant threadlike micelles in an aqueous solution was studied using a mesoscopic simulation method, dissipative particle dynamics, with a coarse-grained surfactant model. The possibility of a phantom crossing, which is the relaxation mechanism for the pronounced viscoelastic behavior of surfactant threadlike micellar solution, was investigated. When two threadlike micelles were encountered at an entanglement point under the condition close to thermal equilibrium, they fused to form a four-armed branch point. Then, a phantom crossing reaction occurred occasionally, or one micelle was cut down at the branch point. Increasing the repulsive forces between hydrophilic parts of the surfactants, fusion occurred less and the threadlike micelle was frequently broken down at an entanglement point. In these three schemes (a phantom crossing cut down at the branch point, and break down at the entanglement point), the breakage occurs at somewhere along the threadlike micelle. The breakage is considered as an essential process in the relaxation mechanism, and a phantom crossing can be seen as a special case of these processes. To explain the experimental evidence that a terminal of threadlike micelles is scarcely observed, a mechanism was also proposed where the generated terminal merges into the connected micelle part between two entanglement points due to the thermal motion.  相似文献   

6.
Increasing the spontaneous curvature of an amphiphile can lead to a first-order morphology transition from threadlike micelles to a branched network. The two morphologies were linked to entropy-driven topological defects; networks are dominated by Y-junctions, while linear threadlike structures are dominated by spherical end-caps. In this paper we investigate the effect of mixing on the morphological transitions in nonionic amphiphilic systems. We find that mixed equilibrium structures are obtained within seconds; these mixed cylindrical structures display comparable numbers of end-caps and branch points, resulting in a novel 'short armed' branched (SAB) morphology. Quite surprisingly, the probability of either defect (end-caps or branch points) is independent of composition, so that neither a first-order nor a second-order morphological transition is observed. A possible explanation may be local demixing of the two amphiphilic components, which adds a degree of freedom and thus enables the formation of a unique morphology that cannot be obtained in single-component systems. We further find that within a relatively large composition range phase equilibrium exists between vesicles, SAB micelles, and spherical micelles.  相似文献   

7.
In a recent study, we showed that the surfactant 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG2000) induced mixed micelles of either threadlike or discoidal shape when mixed with different types of lipids. In this study, we have exchanged the PEG-lipid for the more conventional surfactants octaethylene glycol monododecyl ether (C12E8), hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS). Cryo-TEM investigations show that also these surfactants are able to induce the formation of long-lived discoidal micelles. Generally, the preference for either discoidal or threadlike micelles can be tuned by the choice of lipids and environmental conditions in much the same way as observed for the lipid/PEG-lipid system. Our investigation showed, furthermore, that the choice of surfactant may influence the type of mixed micelles formed. It is argued that the formation of discoidal rather than threadlike micelles may be rationalized as an effect of increasing bending rigidity. Our detailed theoretical model calculations show that the bending rigidity becomes significantly raised for aggregates formed by an ionic rather than a nonionic surfactant.  相似文献   

8.
The differential excess enthalpy of mixed micelle formation was measured at different temperatures by mixing nonionic hexa(ethylene glycol) mono n-dodecyl ether with anionic sodium dodecyl sulfate or cationic dodecylpyridinium chloride. The experimental data were obtained calorimetrically by titrating a concentrated surfactant solution into a micellar solution of nonionic surfactant. The composition and the size of the mixed nonionic/ionic micelles at different surfactant concentrations were also determined. Pronounced differences in both composition and excess enthalpy were found between the anionic and the cationic mixed system. For both systems, the excess enthalpies become more exothermic with increasing temperature, but for the anionic mixed system an additional exothermic contribution was found which was much less temperature dependent. Temperature dependence of the excess enthalpy was attributed to the effect of the ionic headgroup on the hydration of the ethylene oxide (EO) groups in the mixed corona. Ionic headgroups located in the ethylene oxide layer cause the dehydration of the EO chains resulting in an additional hydrophobic contribution to the enthalpy of mixing. A high affinity of sodium dodecyl sulfate for nonionic micelles and an extra exothermic and less temperature dependent contribution to the excess enthalpy found for the SDS-C(12)E(6) system might be attributed to specific interactions (hydrogen bonds) between the sulfate headgroup and the partly dehydrated EO chain.  相似文献   

9.
The viscoelastic behavior of aqueous oleyldimethylamineoxide (ODAO) solutions was examined by varying the concentration of ODAO, cD, and the average degree of protonation, <!>, by adding hydrogen bromide to the system. ODAO forms long threadlike micelles in aqueous solution in spite of the absence of any additives. Therefore, the aqueous ODAO system shows pronounced viscoelastic behavior caused by entanglement between threadlike micelles as highly entangled polymer systems do. The frequency dependence of the storage and loss moduli for the system is perfectly described by that of a Maxwell model possessing only one set of relaxation time, F, and strength, GN. GN is proportional to the square of cD as observed in concentrated liner polymer solutions, while F decreases with increasing cD. On the other hand, the addition of HBr to control <!> remarkably increases F when GN is constant. This suggest that <!> alters the inner structure of the threadlike micelles; association of head groups, dimers or trimers of ODAO are formed in the micelles owing to hydrogen bonding between protonated ODAO or between protonated and unprotonated ODAO. An increase in the number density of the associated head groups in the threadlike micelles increases F. Moreover, the flexibility of the threadlike micelles in the system is not affected so much by a change in the number density of the associated head groups, since GN corresponding to the number density of entanglements in the system is kept constant.  相似文献   

10.
Novel star-shaped trimeric surfactants consisting of three quaternary ammonium surfactants linked to a tris(2-aminoethyl)amine core were synthesized. Each ammonium had two methyls and a straight alkyl chain of 8, 10, 12, or 14 carbons. The adsorption and aggregation properties of these tris(N-alkyl-N,N-dimethyl-2-ammoniumethyl)amine bromides (3C(n)trisQ, in which n represents alkyl chain carbon number) were characterized by equilibrium and dynamic surface tension, rheology, small-angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryo-TEM) techniques. 3C(n)trisQ showed critical micelle concentrations (CMC) 1 order of magnitude lower than that of the corresponding gemini surfactants with an ethylene spacer and the corresponding monomeric surfactants. The logarithm of the CMC decreased linearly with increasing hydrocarbon chain length for 3C(n)trisQ. The slope of the line, which is well-known as Klevens equation, was larger than those of the monomeric and gemini surfactants; however, considering the total carbon number in the chains, the slope was shallower than the monomeric and was close to the gemini. Through the results such as surface tensions at the CMC (32-34 mN m(-1)) and the parameters of standard free energy, CMC/C(20) and pC(20), it was found that 3C(n)trisQ could adsorb densely at the air/water interface despite the strong electrostatic repulsion between multiple quaternary ammonium headgroups. Moreover, dynamic surface tension measurements showed that the kinetics of adsorption for 3C(n)trisQ to the air/water interface was slow because of their bulky structures. Furthermore, the results of rheology, SANS, and cryo-TEM determined that 3C(n)trisQ with n = 10 and 12 formed ellipsoidal micelles at low concentrations in solution and the structures transformed to threadlike micelles with very few branches for n = 12 as the concentration increased, but for n = 14 threadlike micelles formed at relatively low concentrations.  相似文献   

11.
张旭锋  吴文辉 《化学学报》2009,67(20):2381-2384
将阴离子疏水缔合丙烯酰胺共聚物P(NaAMC14S-b-AM)与阳离子蠕虫状胶束十六烷基三甲基溴化铵/水杨酸钠(CTAB/NaSal)在水溶液中自组装制备了新型的缔合增粘体. 由稳态剪切和动态流变实验结果得出: 自组装体系在80 ℃下仍具有显著的协同增粘效应, 其流变行为符合Maxwell模型. 同蠕虫状胶束相比, 自组装体系的稳态模量G0、力学松弛时间τR和缠结点密度ν都有增加, 由此分析缔合体系中两组分间形成了相互缠结的网络结构, 在链缠结处共聚物主链上的疏水侧链嵌入到了蠕虫状胶束的内核.  相似文献   

12.
于亚明  高保娇  江立鼎 《化学学报》2006,64(18):1859-1864
对两种丙烯酰胺型阴离子表面活性单体(2-丙烯酰胺基十四烷磺酸钠, NaAMC14S; 2-丙烯酰胺基十二烷磺酸钠, NaAMC12S)的化学结构与胶束化行为的关系进行了较深入的研究. 使用紫外分光光度法测定了NaAMC14S, NaAMC12S及十二烷基磺酸钠(SDS)在水中的溶解度, 同时采用表面张力法(环法)测定了它们在不同温度下的临界胶束浓度CMC; 采用稳态荧光探针法测定了不同浓度的胶束聚集数与本征胶束聚集数. 实验结果表明, 与普通表面活性剂相比, 由于丙烯酰胺型阴离子表面活性单体分子中具有两个亲水头基, 在水中的溶解性能较强, 故具有较低的Krafft温度; 在溶液表面的饱和吸附量低, 故降低水表面张力的能力较差, 即表面活性差; 疏水缔合的胶团较为疏松, 故聚集数很小; 胶束内分子间的疏水相互作用较弱, 故临界胶束浓度CMC较高.  相似文献   

13.
Intermediate structures of the aggregates in the aqueous solution of an ABA-type silicone surfactant and in the process of an SDS-induced vesicle-micelle transition are reported. In single ABA silicone surfactant aqueous solutions, large multilamellar vesicles (MLV), small single lamellar vesicles (SLV), threadlike micelles (TLM), and spheroidal micelles were observed. Interestingly, a large amount of TLMs were found entrapped into the large MLVs, but not in SLVs. Disintegration of the small vesicles inside the MLVs indicates that the entrapped TLM are from the disintegrated membrane of the entrapped small vesicles. Addition of SDS induced a transition from vesicles or threadlike micelles to spheroidal micelles. The intermediate structures, such as the appearance of small holes in the vesicle membrane, the budding of threadlike micelles from the membrane fracture, and the clusters of spheroidal micelles, were observed with increase of the SDS concentration. The electrical conductivity measurements indicated that complex micelles of SDS and silicone surfactant were formed in the solution due to the interaction between the SDS and PEO part of the silicone surfactant.  相似文献   

14.
Polyethylene glycol (PEG)-conjugated lipids are commonly employed for steric stabilization of liposomes. When added in high concentrations PEG-lipids induce formation of mixed micelles, and depending on the lipid composition of the sample, these may adapt either a discoidal or a long threadlike shape. The factors governing the type of micellar aggregate formed have so far not been investigated in detail. In this study we have systematically varied the lipid composition in lipid/PEG-lipid mixtures and characterized the aggregate structure by means of cryo-transmission electron microscopy (cryo-TEM). The effects caused by adding sterols, phosphatidylethanolamines, and phospholipids with saturated acyl chains to egg phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (EPC/DSPE-PEG2000) mixtures with a fixed amount (25 mol %) of DSPE-PEG2000 was studied. Further, the aggregate structure in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dimyristoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPC/DMPE-PEG2000) samples above and below the gel to liquid crystalline phase transition temperature (TC) was investigated. Our results revealed that lipid components, as well as environmental conditions, that reduce the lipid spontaneous curvature and increase the monolayer bending modulus tend to promote formation of discoidal micelles. At temperatures below the gel-to-liquid crystalline phase transition temperature reduced lipid/PEG-lipid miscibility, furthermore, likely contribute to the observed formation of discoidal rather than threadlike micelles.  相似文献   

15.
SANS measurements revealed that polyelectrolytes, sodium salt of partially sulfonated polystyrenes, incorporated into enormously long hybrid threadlike micelles formed in aqueous solution with a cationic surfactant, cetyltrimethylammonium bromide, have a highly extended conformation with high confinement along the micelles with a radius of 2.3 nm.  相似文献   

16.
The SO4(2-)-induced micellization of poly(ethylene glycol)-block-poly(4-vinylpyridium) (PEG110-b-P(4-VPH+)35) and the thermoresponsiveness of these hybrid micelles are studied by dynamic and static light scattering. When the concentration of H2SO4 is high enough, PEG110-b-P(4-VPH+)35 forms stable hybrid micelles with an ionic core of P(4-VPH+)35/SO4(2-) and a PEG corona at 25 degrees C. The formation of the hybrid micelles is reversible. A thermodynamic equilibrium exists between the hybrid micelles and PEG110-b-P(4-VPH+)35 unimers. The shifts of the equilibrium are mainly attributed to the variation of the electrostatic energy and entropic energy of the system. Therefore, the temperature can determine the states of the equilibrium, which means that the dissociation or the formation of the hybrid micelles can be triggered by just varying the temperature.  相似文献   

17.
Self-organized micelles of new renewable resource amphiphilic azobenzenesulfonic acid anionic surfactant were utilized to prepare water-soluble, luminescent, and highly ordered polypyrrole nanomaterials. The micellar behavior of the reaction medium was precisely controlled by varying the composition of pyrrole/surfactant ratio from 3 to 100 (up to 100 times lower amount of surfactant with respect to pyrrole), and polypyrrole nanospheres of 150-800 nm were prepared. Dynamic light scattering (DLS) and viscosity techniques were employed as tools to trace the factors, which control the mechanism of polypyrrole nanomaterials formation. DLS studies confirmed that the surfactant exists as in the form of spherical micelles of 4.8 nm diameter in water. Specific viscosity measurement revealed that the pyrrole+surfactant complexes in water exist in the form of either aggregated or isolated micelles depending upon their composition in the feed. SEM and TEM analysis confirmed that the aggregated micellar templates produced coral-like morphology, whereas uniform polypyrrole nanospheres of 150-400 nm were obtained at low micellar concentration. The nanomaterials formation was unperturbed by the variation of the oxidation agents such as ammonium persulphate (APS) or ferric chloride (FeCl3). WXRD analysis of the nanomaterials indicates that the anionic surfactant effectively penetrates into the polypyrrole chains, and a new peak at 2theta = 6.3 degrees (d-spacing = 14 A) was observed corresponding to highly ordered polymer chains. UV-vis and FT-IR confirmed the highly doped state, and the conductivity of the samples was obtained in the range of 10(-1) to 10(-2) S/cm by four-probe conductivity measurements. The azobenzenesulfonic acid anionic surfactant is luminescent in water, and its grafting on the polypyrrole nanospheres enhances the luminescent intensity with the quantum yield in the range of 2 x 10(-3) to 3 x 10(-4).  相似文献   

18.
The aqueous microemulsion system consisting of the fluorinated surfactant tetraethylammonium perfluorooctylsulfonate (TEAFOS) and the fluorinated oil 1H-perfluorohexane (PFH) has been investigated using the pulsed field gradient NMR self-diffusion method on both 1H and 19F. Neat TEAFOS(aq) builds threadlike micelles from rather low surfactant concentrations up to ca. 80 mmol kg(-1). The addition of PFH to TEAFOS(aq) solutions induces a transition from threadlike micelles to spherical micelles solubilizing the oil. In this paper, information from the self-diffusion coefficients of oil (PFH), surfactant counterion (TEA+), surfactant ion (FOS-), and water (HDO) during the transition is presented.  相似文献   

19.
The evolution of the solution microstructures during the formation of the hexagonal mesoporous material SBA-15 was studied by direct imaging and freeze-fracture replication cryo-TEM. A reaction mixture was sampled at different times after the addition of tetramethoxyorthosilane (TMOS) to an acidic solution of Pluronic P123 held at 50 degrees C. Solution microstructures were detected by direct imaging cryo-TEM in the time window of 6.5-40 min after the addition of the TMOS (t = 0). The micrographs revealed that the initial spheroidal micelles evolve into threadlike micelles, which become longer and straighter with time. Then bundles with the dimensions similar to those found in the final material appeared, although there was no sign of a hexagonal arrangement up to 40 min. Due to the appearance of a precipitate at 40 min the sample became too viscous, preventing clear observation of its content. To observe the structures present after 40 min, freeze-fracture replication was carried out as well. Such samples were collected also at 22 min and showed the presence of threadlike micelles in agreement with the direct imaging cryo-TEM micrographs. The 2 h samples showed some areas of hexagonal ordered structures, which become very clear at 2 h 50 min. The cryo-TEM measurements were carried out under the same reaction conditions used in earlier in situ EPR experiments, thus allowing us to correlate molecular level events with the microstructure shape evolutions. This showed that the elongation of the micelles is a consequence of a reduction of the polarity and the water content within the micelles due to silicate adsorption and polymerization. Similar experiments were carried out also on SBA-15 prepared with HCl and TMOS at 35 degrees C. The appearance of threadlike micelles, followed by clustering of the TLMs, was observed under these conditions as well, but the reaction rate was faster. This suggests that the observed mechanism for the formation of SBA-15 is general.  相似文献   

20.
The interaction of amphiphilic block copolymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous media has been studied by sedimentation in ultracentrifuge. Three well-defined populations of hybrid aggregates corresponding to micelles, micellar clusters, and supermicellar aggregates were detected in the PS-b-PEO/SDS aqueous solutions at various rotation rates. Parameters of all the micellar aggregates were characterized depending on the SDS loading. An increase in the SDS loading was found to result in an increase in block copolymer/surfactant micelle size and weight at the SDS concentration of 0.8x10(-3) mol/L and in a slight decrease of both parameters at critical micelle concentration and at higher concentration. This decrease was caused by incorporation of SDS molecules in block copolymer micelles followed by charging the PS core and repulsion between similar charges. Using dichlorotetrapyridine rhodium(III)chloride hexahydrate ([Rh(Py)(4)Cl(2)]Clx6H(2)O), ion exchange of surfactant counterions in the hybrid PS-b-PEO/SDS system for Rh cations was carried out, which allowed saturating the micellar structures with Rh species. Subsequent reduction of the Rh-containing hybrid solutions with NaBH(4) resulted in the formation of Rh nanoparticles with a diameter of 2-3 nm mainly located in the block copolymer micellar aggregates. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号