首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The modulation of strain on the electronic properties of ZnO:P is investigated by density functional theory calculations. The variation of formation energy (Ef) and band structure with strains ranging from ?0.1 to 0.1 are considered. Although both the conduction band minimum (CBM) and the valence band maximum of ZnO are antibonding states, the CBM is more sensitive to strain, reducing the band gap with an increase in strain. P‐substituted O (PO) defects show poor p‐type conductivity due to a smaller Ef and lower lying acceptor levels as a consequence of lattice expansion. The Ef of P‐substituted Zn (PZn) defects decreases under tension, owing to the release of strong repulsive stress induced by excess electrons from PZn. The donor energy band of PZn broadens under tensile strain, which benefits n‐type conductivity. For Zn vacancies (VZn) and PZn–2VZn complexes, the distances between the O atoms around VZn are so large that repulsive and attractive interactions become weak, which results in an easy release of the strain. We herein present for the first time that the Ef values of VZn and PZn–2VZn complexes decrease under both tension and compression, or in the high‐pressure rock‐salt phase. Under a strain of 0.1 the PZn–2VZn complex shows the smallest Ef. Under ?0.07 strain the wurtzite/rock‐salt phase transition occurs and the direct band gap becomes an indirect one. The variation of band structures in the rock‐salt phase is similar to that in the wurtzite phase. Consequently, the p‐type conductivity of ZnO:P can be improved with an increase in solubility of PZn–2VZn or VZn defects.  相似文献   

2.
The electronic properties of α‐LixV2O5 (x=0.5 and 1) are investigated using first principle calculations based on density functional theory with local density approximation. Different intercalation sites for Li in the V2O5 lattices are considered, showing different influences on the electronic structures of LixV2O5. The lowest total energy is found when Li is only intercalated along the c axis between two bridging oxygen ions of sequential V2O5 layers. The intercalation of Li into V2O5 does not change the electron transition property of V2O5, which is an indirect band gap semiconductor, but leads to a reduction of vanadium ions and an increase of the Fermi level of LixV2O5 arising from the electron transfer from the Li 2 s orbital to the initially empty conduction band of the V2O5 host.  相似文献   

3.
In this work, a latent energy-transfer process in traditional Eu3+,Tb3+-doped phosphors is proposed and a new class of Eu3+,Tb3+-doped Na4CaSi3O9 (NCSO) phosphors is presented which is enabled by luminescence decay dynamics that optimize the electron-transfer energy process. Relative to other Eu3+,Tb3+-doped phosphors, the as-synthesized Eu3+,Tb3+-doped NCSO phosphors show improved large-scale tunable emission color from green to red upon UV excitation, controlled by the Tb3+/Eu3+ doping ratio. Detailed spectroscopic measurements in the vacuum ultraviolet (VUV)/UV/Vis region were used to determine the Eu3+–O2− charge-transfer energy, 4f–5d transition energies, and the energies of 4f excited multiplets of Eu3+ and Tb3+ with different 4fN electronic configurations. The Tb3+→Eu3+ energy-transfer pathway in the co-doped sample was systematically investigated, by employing luminescence decay dynamics analysis to elucidate the relevant energy-transfer mechanism in combination with the appropriate model simulation. To demonstrate their application potential, a prototype white-light-emitting diode (WLED) device was successfully fabricated by using the yellow luminescence NCSO:0.03Tb3+, 0.05Eu3+ phosphor with high thermal stability and a BaMgAl10O17:Eu2+ phosphor in combination with a near-UV chip. These findings open up a new avenue to realize and develop multifunctional high-performance phosphors by manipulating the energy-transfer process for practical applications.  相似文献   

4.
The commercial vacuum ultraviolet (VUV) red phosphor (Y, Gd)BO3:Eu3+ has low luminous efficiency and poor color purity. Our work aims to overcome this drawback and we mainly devote to investigating the luminescence mechanism, improving the commercial red phosphor, and seeking for new red emitting VUV materials with high efficiency. Based on the investigation of the photoluminescence mechanism of VUV phosphors, both the luminous efficiency and the color purity of (Y, Gd)BO3:Eu3+ are improved. Additionally, a series of novel VUV red phosphors have been developed, such as (Gd,Y)Al3(BO3)4:Eu3+ and (La,Gd)P3O9:Eu3+. This presentation is a review about the recent research progress of red phosphors for plasma displays (PDPs) applications in our group.  相似文献   

5.
The structural characteristics and optical spectra of Y(P,V)O4:Dy3+phosphors obtained by solid state reaction, sol-gel and hydrothermal routes have been investigated and compared. The luminescence features of these materials show a complicate dependence on the composition, synthetic method and excitation conditions. The emission performance depends on different effects: host luminescence, energy transfer to the doping ions and host dependence of the Dy3+ emission properties. These effects have been rationalized in order to provide useful information for the development of a suitable material for the white light emitting phosphors technology.  相似文献   

6.
Theoretical calculation based on density functional theory (DFT) and local density approximation (LDA) with Hubbard parameters has been carried out in studying defect formation energy, transition energy and ferromagnetism of carbon-doped ZnO nanowires (NW). The formation and ionization characteristics of the defects [CO (B), CO (S), CZn (B), VO (B), VZn (B), IO (oct) and IZn (oct)] in ZnO NW are analyzed in the text. Ferromagnetic (FM) and antiferromagnetic (AFM) coupling between C atoms are also investigated by 9 different configurations. The FM and AFM stability are explained by the interaction of C energy level. In addition, the vacancies [VO (B) and VZn (B)] and interstitials [IO (oct) and IZn (oct)] affecting the FM coupling are also investigated. It is found that magnetic moment of C 2p can be mediated by these defects.  相似文献   

7.
The luminescence properties of 2%Er3+/15%Yb3+ doped LnP0.5V0.5O4 (LnPVO4) (Ln = Y, Gd, La) phosphors, synthesized via the traditional citric-assisted Sol gel method, are studied under light excitations of 980 nm and 325 nm to generate the 2H11/2/4S3/24I15/2 transitions via up- and downshifting mechanisms, respectively. The phase purity of the samples was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). We present herein a comparative study of the spectral and temperature sensing properties of LnPVO4: Er3+/Yb3+ (Ln = Y, Gd, La) phosphors. The crystal field effects on the up-shifting luminescence and on the thermometric parameters are investigated by the substitution of Er3+ ions on Y3+, Gd3+ or La3+ sites in the YPVO4, GdPVO4 and LaPVO4 hosts respectively. Fluorescence intensity ratio (FIR) technique was used to study the temperature sensing behavior of the phosphors. This study showed that downshifting emission gives the highest thermal sensitivities and the greatest thermal resolution compared to downshifting emission. These outcomes indicate that these materials are preferred for use in the luminescence temperature sensing in a down-conversion process to provide the greatest performance.  相似文献   

8.
采用优化的高温固相方法制备了稀土离子Eu3+和Tb3+掺杂的La7O6(BO3)(PO42系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La7O6(BO3)(PO42:Eu3+材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D07F2特征能级跃迁,Eu3+的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La7O6(BO3)(PO42:Tb3+材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb3+5D47F5能级跃迁,Tb3+离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu3+和Tb3+掺杂的La7O6(BO3)(PO42荧光材料均具有良好的热稳定性。  相似文献   

9.
Searching for broadband near-infrared (NIR) materials with high efficiency and excellent thermal luminescence stability is of great significance because of their widespread spectroscopic applications. Different element substitution can modulate the structure and crystal field of host lattice so as to regulate the luminescent properties. Herein, we report the octahedron-dependent NIR luminescence in Cr3+-doped KMP2O7 (M = Ga, Sc, In, and Lu) phosphors and investigate the effect of octahedral environment on luminescent properties, aiming to provide guidance for host material selection. The decreased crystal field strength leads to the apparent spectral red shift from 815 to 900 nm for the samples of M = Ga to Lu. The small Stokes shift as well as weak electron–phonon coupling effect decreases the non-radiative transition probability and thus gives rise to the highest emission intensity and excellent thermal stability of Cr3+-doped KGaP2O7. The optimal sample, KGa0.89P2O7:0.11Cr3+, possesses an internal/external quantum efficiency of 55.8%/36.6%, and its integrated emission intensity at 423 K can maintain 68% of that at room temperature. Finally, we investigate the potential applications in non-destructive examination field by manufacturing a NIR phosphor-conversion light-emitting diode device.  相似文献   

10.
以SrCO3,Si3N4,Eu2O3为原料,在N2气氛下,采用自还原高温固相法制备了SrSi2O2N2:Eu2+荧光粉。研究了该荧光粉的物相结构、发光性能和晶体形貌,同时对比在不同气氛下合成的荧光粉。结果表明,在N2气氛与N2/H2气氛下分别合成的SrSi2O2N2:Eu2+荧光粉物相结构和光谱特性基本一致。显示出合成了主晶相SrSi2O2N2,但还含有少量未知的中间项。Eu2+浓度的变化不影响激发状态,而发射光谱的波长在Eu2+浓度为1mol%-20mol%之间,从530 nm的绿光红移至550 nm的黄绿光区域。同时,激发光谱覆盖的范围宽,均能有效的被UV或蓝光激发,这意味着该类荧光粉在白光LED方面有可能得到广泛的应用。  相似文献   

11.
Luminescent materials are indispensable in our daily lives and have already been widely applied in various fields. Herein, novel self-host blue-emitting CaSrSb2O7 and CaSrSb2O7:Bi3+ phosphors with orthorhombic space group Imma (74) were successfully prepared. The phase purity, elemental composition, morphology, luminescent behaviors, etc. were investigated in detail. To compare the luminescence properties of rare-earth-activated phosphors, the self-host blue-emitting CaSrSb2O7 phosphor with unique performance exhibited a good quantum yield (QY) of 39.81%, and its emission intensity and QY could also be improved by doping Bi3+ ions. The CaSrSb2O7:Bi3+ phosphor was located in the pure blue region with the Commission Internationale de I'Eclairage chromaticity coordinate of (0.151, 0.058) and good color purity of 89.35%. For identifying its potential applications, the packaged white light-emitting diode device emitted a high color rendering index value of 93.66 under a forward current of 300 mA, and it would be further applied in security inks and flexible displays owing to its strong emission by the naked eyes. These results suggest that novel self-host blue-emitting CaSrSb2O7:Bi3+ phosphors could be used in multifunctional applications.  相似文献   

12.
通过葡萄糖协助的水热以及随后的退火处理两步法成功制备了系列ZnO/In2O3复合空心球. X射线衍射谱(XRD)表明, 经500 ℃退火制得的ZnO/In2O3复合空心球中ZnO以非晶态存在, 但是随着退火温度的提高, 其逐渐转变为纤锌矿结构. 场发射扫描电子显微镜(FE-SEM)和透射显微镜(TEM)结果表明, ZnO/In2O3复合材料具有空心球结构, 复合纳米颗粒之间结合紧密. 将ZnO/In2O3复合空心球组装成薄膜光电极, 研究了其光电催化降解葡萄糖的性能. 结果表明, 700 ℃退火处理的ZnO/In2O3复合空心球薄膜电极可产生最高的光致电流密度. 通过光致发光光谱(PL)发现, 与ZnO或In2O3空心球相比, ZnO/In2O3复合空心球的发光强度猝灭效果明显. 这是由于复合材料中晶界处产生的p-n结电场, 降低了光生电子-空穴对的复合几率, 从而使更多的光生电子可迁移到电极表面.  相似文献   

13.
This review includes research papers on different methods of preparation of Eu2+ and Dy3+-doped SrAl2O4 phosphors and papers reporting luminescence studies of the materials. The methods of preparation were compared and it was concluded that solid state reaction is the best method. Papers on characterization of these phosphors by X-ray diffraction and scanning electron microscopy are also discussed. The review ends with a few important conclusions.  相似文献   

14.
The effect of calcium substitution on the afterglow of tetrastrontium aluminate phosphors (Sr4Al14O25:Eu2+, Dy3+) was investigated. A series of (Sr1-xCax)O⊎nAl2O3:Eu2+(1%), Dy3+(0.5%), with variation of calcium content (x = 0 − 1), were synthesized by a high temperature solid state reaction in a reducing atmosphere. The photoluminescence, persistent luminescence (afterglow), and lumen equivalents of these materials were studied and compared. It turned out that the afterglow properties of the phosphors were strongly dependent on the Sr/Ca ratio. As the Ca content increased, a phase transition and blue shift in emission spectra were observed.   相似文献   

15.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

16.
Novel self activated green phosphors; K2ZnV2O7 (KZV) and K2MgV2O7 (KMV) have been prepared and characterized in details. Both KZV and KMV were prepared by solid state reaction and systematically characterized by a number of techniques like X-ray diffraction (XRD), Fourier transformed Infrared (FTIR), Raman spectroscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), diffuse reflectance spectroscopy (DRS) and time resolved photoluminescence spectroscopy (TRPLS). XRD studies confirm tetragonal melilite type layered phase for both of them. The presence of pyrovanadate group in both is supported by FTIR and Raman spectroscopic investigations. Raman bands of KMV are blue shifted w.r.t to KZV which may be due to shorter bond lengths of MgO compared to ZnO and lower atomic weight of magnesium compared to zinc. DRS measurements indicated the optical band gap of KMV and KZV are 3.14 and 3.12 eV, respectively. Optical measurements on these samples show the emission of green color on ultra violet light irradiation. The origin of such emission is attributed to electronic transition (charge transfer) from filled 2p orbital of oxygen ion (O2−) to vacant 3d orbital of vanadium ion (V5+). In KZV there are dual emission band (PL1 and PL2) which are respectively attributed to 3T2 → 1A1 and 3T1 → 1A1transition, and the emission zone varies slightly compared to KMV. KZV emits bluish green (cool green) where KMV emits in yellowish green (warm green) region. This is indeed an important step towards realization of cost effective rare earth free luminescence material. It is also oberved that PL intensity of KZV is very high compared to KMV which is supported by the lifetime measurements.  相似文献   

17.
Titanium‐oxide‐based materials are considered attractive and safe alternatives to carbonaceous anodes in Li‐ion batteries. In particular, the ramsdellite form TiO2(R) is known for its superior lithium‐storage ability as the bulk material when compared with other titanates. In this work, we prepared V‐doped lithium titanate ramsdellites with the formula Li0.5Ti1?xVxO2 (0≤x≤0.5) by a conventional solid‐state reaction. The lithium‐free Ti1?xVxO2 compounds, in which the ramsdellite framework remains virtually unaltered, are easily obtained by a simple aqueous oxidation/ion‐extraction process. Neutron powder diffraction is used to locate the Li channel site in Li0.5Ti1?xVxO2 compounds and to follow the lithium extraction by difference‐Fourier maps. Previously delithiated Ti1?xVxO2 ramsdellites are able to insert up to 0.8 Li+ per transition‐metal atom. The initial gravimetric capacities of 270 mAh g?1 with good cycle stability under constant current discharge conditions are among the highest reported for bulk TiO2‐related intercalation compounds for the threshold of one e? per formula unit.  相似文献   

18.
The characterization and luminescence properties of nanostructured Gd2O3:Eu3+ phosphors synthesized by a sol-lyophilization process are presented. After preparation of gadolinium-based sols from gadolinium nitrate and ammonium hydroxide, the so-prepared sols were freeze dried at −10°C and calcinated at different temperatures. For temperatures lower than 1300 K, highly crystalline samples with the cubic structure can be obtained without concomitant grain growth of the particles (<50 nm). The luminescence spectra contain all possible transitions of Eu3+ with C2 symmetry and present two major features: an increase of the luminescence efficiencies of the phosphors in comparison with that obtained by solid-state reaction and the presence of an additional peak at about 609 nm at the vicinity of the 5D07F0…4 transition.  相似文献   

19.
The development of high-brightness far-red-emitting phosphors with emission wavelength within 650–750 nm is of great significance for indoor plant cultivation light-emitting diode (LED) lighting. Herein, we demonstrate a novel efficient far-red-emitting phosphors CaMg2La2W2O12:Mn4+ (abbreviated as CMLW:Mn4+) toward application in plant cultivation LEDs. Interestingly, the CMLW:Mn4+ phosphors show a broad excitation band in the 250–600 nm spectral range with two peaks at 352 and 479 nm, indicating they could be efficiently excited by near-ultraviolet and blue light. Under 352 nm excitation, the CMLW:Mn4+ phosphors exhibit an intense far-red emission band in the wavelength range of 650–800 nm peaking at 708 nm, corresponding to the 2Eg → 4A2g transition of Mn4+ ions. Mn4+ doping concentration-dependent luminescence properties are studied in detail, and the concentration quenching mechanism is also investigated. Particularly, the internal quantum efficiency of CMLW:Mn4+ phosphors reaches as high as 44%, and their PL spectra match well with the absorption spectrum of phytochrome PFR (PFR stands for far-red-absorbing form of phytochrome). Furthermore, a prototype LED device is fabricated by coating the as-prepared CMLW:0.8%Mn4+ phosphors on a 460 nm blue LED chip, which produces bright far-red emissions upon 20–300 mA driving currents. This work reveals that the newly discovered far-red-emitting CMLW:Mn4+ phosphors hold great potential for application in indoor plant cultivation.  相似文献   

20.
A low‐temperature topochemical reduction strategy is used herein to prepare unconventional phosphors with luminescence covering the biological and/or telecommunications optical windows. This approach is demonstrated by using BiIII‐doped Y2O3 (Y2?xBixO3) as a model system. Experimental results suggest that topochemical treatment of Y2?xBixO3 using CaH2 creates randomly distributed oxygen vacancies in the matrix, resulting in the change of the oxidation states of Bi to lower oxidation states. The change of the Bi coordination environments from the [BiO6] octahedra in Y2?xBixO3 to the oxygen‐deficient [BiO6?z] polyhedra in reduced phases leads to a shift of the emission maximum from the visible to the near‐infrared region. The generality of this approach was further demonstrated with other phosphors. Our findings suggest that this strategy can be used to explore Bi‐doped or other classes of luminescent systems, thus opening up new avenues to develop novel optical materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号