首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eu3+ ions activated La2Ti2O7 (La2Ti2O7:xEu3+) phosphors have been successfully synthesized by a fractional precipitation method from commercially available La2O3, Eu2O3, HNO3, Ti(SO4)2·9H2O and NH3·H2O as the starting materials. Detailed characterizations of the synthetic products were obtained by fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), differential thermal analysis, thermogravimetry and derivative thermogravimetry (DTA-TG-DTG), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. The results show that the precursor is composed of amorphous particles with quasi-spherical in shape and about 50 nm in size. Moreover, the precursor could be converted into pure La2Ti2O7 phase by calcining at 1000 °C for 2 h in air. The as-synthesized La2Ti2O7 particles are approximate polyhedron in shape and about 100–200 nm in size. PL spectroscopy of La2Ti2O7:xEu3+ phosphors reveals that the strongest emission peak is located at 616 nm under 275 nm ultraviolet (UV) light excitation, which corresponds to the 5D07F2 transition of Eu3+ ions. The quenching concentration of Eu3+ ions is 10.0 mol%, and its corresponding fluorescence lifetime was 1.82 ms according to the linear fitting result. Decay study reveals that the 5D07F2 transition of Eu3+ ions has a single exponential decay behavior.  相似文献   

2.
《Solid State Sciences》2012,14(5):607-610
Novel Eu2+ and Ce3+ activated BaMg8Al18Si18O72 phosphors was prepared by combustion method and their PL characteristics were investigated. The result shows that all samples can be excited efficiently by near UV excitation under 334 nm and 316 nm. The emission was observed for BaMg8Al18Si18O72:Eu2+ phosphor at 437 nm corresponding to d → f transition, under 334 nm broad-band excitation, whereas BaMg8Al18Si18O72:Ce3+ phosphor shows emission band at 376 nm under 316 nm excitation. Phase purity of the phosphor was checked with the help of XRD pattern. SEM analysis shows the external morphology of the combustion synthesized phosphor.  相似文献   

3.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   

4.
《印度化学会志》2021,98(12):100237
In this work, europium and terbium activated Sr2GeO4 phosphors were successfully developed by traditional solid state method. Powders XRD, FESEM, EDS, FTIR, DRS and PL techniques have been used to probe the as prepared phosphors. Powder XRD patterns of the phosphors are indexed. The elemental composition of phosphors was obtained from their EDS. FTIR spectra are employed to detect different vibrational groups in phosphor compositions. The DRS profiles of both pristine and Eu3+ (Tb3+) substituted samples exhibit broad and strong band in the 230–370 ​nm region. The photoluminescence studies of europium and terbium doped phosphors exhibited optimistic red emission at 617 ​nm (5D07F2 of Eu3+ ions) and intense green emission at 543 ​nm (5D47F5 of Tb3+ ions) upon ultraviolet (UV) excitations respectively. The CIE chromaticity co-ordinates are produced in deep red and green regions. Therefore, these materials may become potential alternatives for red and green phosphors in the display devices and in lamp industry.  相似文献   

5.
Eu3+, Dy3+ and Dy3+/Eu3+ doped CdO-GeO2-TeO2 glasses were prepared using the melt-quenching process and analyzed by X-diffraction, Raman spectroscopy, excitation and emission spectra, and emission decay time profiles. The lack of X ray diffraction peaks revealed that all samples are amorphous. Vibrational modes associated with TeOTe and GeOGe related bonds and molecular oxygen were detected by Raman spectroscopy. The luminescence characteristics were studied upon excitations that correspond with the emission of InGaN (370–420 nm) based LEDs. The Eu3+ singly doped glass displayed reddish-orange global emission, with x = 0.601 and y = 0.349 CIE1931 chromaticity coordinates, upon 393 nm excitation. Neutral emission with x = 0.373 and y = 0.412 CIE1931 chromaticity coordinates and correlated color temperature (CCT) of 4400 K, was achieved in the Dy3+ singly doped glass excited at 388 nm. The Dy3+/Eu3+ co-doped glass exhibited warm, neutral and soft warm white emissions with CCT values of 3435, 4153 and 2740 K, under excitations at 382, 388 and 393 nm, respectively, depending mainly on the Dy3+ and Eu3+ relative excitation. The Dy3+ excitation bands observed in the Dy3+/Eu3+ glass by monitoring the 611 nm Eu3+ emission, suggest that Dy3+ → Eu3+ energy transfer takes place, despite the fact that the Dy3+ emission decays in the Dy3+ and Dy3+/Eu3+ doped glass, remain without changes. The shortening of Eu3+ decay in presence of Dy3+ was attributed to an Eu3+ → Dy3+ non-radiative energy transfer process, which according with the Inokuti-Hirayama model might be dominated through an electric quadrupole-quadrupole interaction, with efficiency and probability of 5.5% and 51.6 s−1, respectively.  相似文献   

6.
The Bi2Sn2O7 pyrochlore is known to undergo a sequence of structural phase transitions with an increase in temperature. Raman spectroscopy was employed in the investigation of the temperature dependence of the active phonons in the Raman spectrum. We observed 19 broad modes at room temperature, reflecting the low symmetry of the α-phase of Bi2Sn2O7. The modes were discussed in relation to the Raman spectra of other pyrochlore-based oxides. The temperature dependence of the phonons evidences the α  β structural phase transition observed near 127 °C.  相似文献   

7.
We present a detailed study of Raman spectroscopy and photoluminescence measurements on Li‐doped ZnO nanocrystals with varying lithium concentrations. The samples were prepared starting from molecular precursors at low temperature. The Raman spectra revealed several sharp lines in the range of 100–200 cm?1, which are attributed to acoustical phonons. In the high‐energy range two peaks were observed at 735 cm?1 and 1090 cm?1. Excitation‐dependent Raman spectroscopy of the 1090 cm?1 mode revealed resonance enhancement at excitation energies around 2.2 eV. This energy coincides with an emission band in the photoluminescence spectra. The emission is attributed to the deep lithium acceptor and intrinsic point defects such as oxygen vacancies. Based on the combined Raman and PL results, we introduce a model of surface‐bound LiO2 defect sites, that is, the presence of Li+O2? superoxide. Accordingly, the observed Raman peaks at 735 cm?1 and 1090 cm?1 are assigned to Li? O and O? O vibrations of LiO2.  相似文献   

8.
《Solid State Sciences》2012,14(3):349-353
ZnO (microdisks)/W18O49 (nanorods) heterostructures were grown on a Si(111) substrate using a thermal evaporation method. X-ray diffraction of the products indicated two separate phases belong to monoclinic W18O49 and hexagonal ZnO structures. Field emission scanning electron microscope (FESEM) images showed W18O49 nanorods with approximately uniform diameters (∼20 nm) on ZnO microdisk. Field emission Auger electron spectroscopy (FEAES) also confirmed two separate elemental characteristics of W18O49 and ZnO. The Raman and photoluminescence (PL) studies demonstrated that the ZnO microdisks have a good crystallinity with excellent optical properties. The Raman results of the ZnO(microdisks)/W18O49(nanorods) heterostructures indicated only W18O49 structure and the PL results of the heterostructures showed two peaks, one in the ultraviolet region at 374 nm and another in the visible region at 500 nm, which both belong to W18O49 nanorods.  相似文献   

9.
Neodymium doped Barium Zirconate Titanate (Ba1−xNd2x/3)(Zr0.3Ti0.7)O3 (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were prepared using the solid state reaction route. Structural characterizations of the materials were done by using X-ray diffraction and Raman spectroscopy. XRD study suggested that all the compositions were of single phase cubic perovskite structure with space group Pm-3m while Raman spectra revealed that the replacement of the Ba2+ ions by Nd3+ ions significantly reduced the intensity of the Raman active modes and shifted them towards higher energy side. Room temperature optical property was analyzed by photoluminescence spectroscopy, which confirmed formation of shallow defects in the band gap. Photoluminescence property was attributed to the presence of polar [TiO6] distorted clusters in the globally cubic matrix. As a result PL emission spectra of these materials were found to belong to violet–blue regions. Microstructural study of sintered pellets revealed that the grain sizes increase with increase in doping concentration. The temperature dependence of the dielectric properties was investigated in the frequency range 1 kHz to 1 MHz. The broadening in the dielectric constant peak around the phase transition temperature and shifting of the temperature maximum towards higher temperatures with increase in frequency indicated a relaxor type of behavior.  相似文献   

10.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O).  相似文献   

11.
The multicolor Gd2O2S:xTb3+, yEu3+ hollow spheres were successfully synthesized via a template-free solvothermal route without the use of surfactant from commercially available Ln (NO3)3·6H2O (Ln = Gd, Tb and Eu), absolute ethanol, ethanediamine and sublimed sulfur as the starting materials. The phase, structure, particle morphology and photoluminescence (PL) properties of the as-obtained products were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and photoluminescence spectra. The influence of synthetic time on phase, structure and morphology was systematically investigated and discussed. The possible formation mechanism depending on synthetic time t for the Gd2O2S phase has been presented. These results demonstrate that the Gd2O2S hollow spheres could be obtained under optimal condition, namely solvothermal temperature T = 220 °C and synthetic time t = 16 h. The as-obtained Gd2O2S sample possesses hollow sphere structure, which has a typical size of about 2.5 μm in diameter and about 0.5 μm in shell thickness. PL spectroscopy reveals that the strongest emission peak for the Gd2O2S:xTb3+ and the Gd2O2S:yEu3+ samples is located at 545 nm and 628 nm, corresponding to 5D47F5 transitions of Tb3+ ions and 5D07F2 transitions of Eu3+ ions, respectively. The quenching concentration of Tb3+ ions and Eu3+ ions is 7%. In the case of Tb3+ and Eu3+ co-doped samples, when the concentration of Tb3+ or Eu3+ ions is 7%, the optimum concentration of Eu3+ or Tb3+ ions is determined to be 1%. Under 254 nm ultraviolet (UV) light excitation, the Gd2O2S:7%Tb3+, the Gd2O2S:7%Tb3+,1%Eu3+ and the Gd2O2S:7%Eu3+ samples give green, yellow and red light emissions, respectively. And the corresponding CIE coordinates vary from (0.3513, 0.5615), (0.4120, 0.4588) to (0.5868, 0.3023), which is also well consistent with their luminous photographs.  相似文献   

12.
Y2O3:Bi3+ phosphor thin films were prepared by pulsed laser deposition in the presence of oxygen (O2) gas. The microstructure and photoluminescence (PL) of these films were found to be highly dependent on the substrate temperature. X-ray diffraction analysis showed that the Y2O3:Bi3+ films transformed from amorphous to cubic and monoclinic phases when the substrate temperature was increased up to 600 °C. At the higher substrate temperature of 600 °C, the cubic phase became dominant. The crystallinity of the thin films, therefore, increased with increasing substrate temperatures. Surface morphology results obtained by atomic force microscopy showed a decrease in the surface roughness with an increase in substrate temperature. The increase in the PL intensities was attributed to the crystallinity improvement and surface roughness decrease. The main PL emission peak position of the thin films prepared at substrate temperatures of 450 °C and 600 °C showed a shift to shorter wavelengths of 460 and 480 nm respectively, if compared to the main PL peak position of the powder at 495 nm. The shift was attributed to a different Bi3+ ion environment in the monoclinic and cubic phases.  相似文献   

13.
Er3+-doped tellurite glass containing silver nanoparticles (NPs) has been synthesized. Detailed structural and optical characterizations have been carried out. Infrared to visible frequency upconversion (UC) emission has been observed in Er3+-doped tellurite glass on pumping with the 976 nm radiation. Further, an enhancement in UC emission intensity of green bands (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2) of Er3+ ion has been observed up to four times in presence of silver NPs in the glass annealed at 240 °C for 40 h. Though, there is enhancement in intensity in the red band (4F9/2 → 4I15/2) also but it is smaller. The enhancement in fluorescence intensity is attributed to local field effect due to the silver NPs.  相似文献   

14.
A novel nonlinear optical (NLO) material Bi2O2CO3 has been successfully developed by the hydrothermal method. It was characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectra, high resolution transmission electron microscopy (HRTEM), UV–vis–NIR diffuse reflectance spectrum (DRS) and photoluminescence (PL) spectra. The band gap was determined to be 3.42 eV, and the PL properties of Eu3+ doped Bi2O2CO3 under UV excitation have also been investigated. The powder second-harmonic generation (SHG) measurement performed on the ground crystal indicates that the NLO efficiency is approximately 5 times as large as that of KDP (KH2PO4) standard. In addition, the origin of large SHG for Bi2O2CO3 was also researched according to its crystal structure.  相似文献   

15.
Effects induced by high-dose irradiation on manganese- and silver-doped Li2B4O7 (lithium tetraborate, LTB) single crystals were monitored by photoluminescence and optical absorption spectroscopy. High-dose (1.0×103 and 1.2×104 Gy) irradiation of the samples was performed using high-energy, short-time (4 MeV, 2.6 μs) electron pulses of a linear electron accelerator. Changes in the oxidation states of dopants were revealed. Recharging of manganese Mn2+→Mn3+ and Ag+→Ag0 were observed. Ionization process Mn2+→Mn3++e and creation of Ag0-nanoparticles are supposed.  相似文献   

16.
In this article the physical, thermal structural and optical properties of Dy3+ doped lithium borate glasses have been studied for white LED application. The emission spectra shows two intense emission bands at around 483 nm and 574 nm corresponds to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions along with one feeble band at 663 nm corresponds to 4F9/2 → 6H11/2 transition. The average lifetime <τ> of Dy3+ were found to be about 2.95 and 4.94 ns for blue and yellow emission bands respectively. CIE chromaticity diagram shows glass LBD-4 containing 0.5 mol% Dy2O3 with colour co-ordinates x = 0.33 and y = 0.37 have highest emission intensity. These glasses having emission in the white region and thus can be used for bright white LED's and modern white LED bulbs.  相似文献   

17.
A series of Cr/Al2O3 and Co/Al2O3 catalysts were tested in the selective ammoxidation of ethylene to acetonitrile. Catalysts were prepared either by sol–gel method or by impregnation with chromium or cobalt acetylacetonate salts. Physicochemical properties of catalysts were accomplished by several techniques such as chemical analysis, physisorption of N2, X-ray diffraction (XRD), 27Al MAS NMR, UV–Visible diffuse reflectance (DRS) and Raman spectroscopy and temperature programmed reduction of H2 (H2–TPR). Textural analysis reveals that mesoporous materials with pronounced surface areas were obtained using sol–gel procedure while impregnation of the support produces a moderate decrease of its surface area and pore volume. XRD analysis confirms the presence of highly dispersed metal species which reside essentially on the surface and measure less than 4 nm. Furthermore, 27Al MAS NMR shows that for xerogels, part of metal species occupies sites on/in A12O3 in close vicinity of octahedral 27Al. This, apparently, is not the case for aerogels. For Cr/Al2O3 catalysts, isolated Cr6+, mono and polychromate species were identified using DRS, Raman Spectroscopy and H2–TPR which seem to play a key role in the ammoxidation of ethylene. Furthermore, for cobalt doped catalysts, CoAl2O4 was identified as active phase on the basis of DRS and H2–TPR results. From the supercritical drying, it results generally better catalysts than catalysts calcined by ordinary procedure which leads to inactive agglomerated Co3O4 and CoO–Al2O3 phase.  相似文献   

18.
The development of high-brightness far-red-emitting phosphors with emission wavelength within 650–750 nm is of great significance for indoor plant cultivation light-emitting diode (LED) lighting. Herein, we demonstrate a novel efficient far-red-emitting phosphors CaMg2La2W2O12:Mn4+ (abbreviated as CMLW:Mn4+) toward application in plant cultivation LEDs. Interestingly, the CMLW:Mn4+ phosphors show a broad excitation band in the 250–600 nm spectral range with two peaks at 352 and 479 nm, indicating they could be efficiently excited by near-ultraviolet and blue light. Under 352 nm excitation, the CMLW:Mn4+ phosphors exhibit an intense far-red emission band in the wavelength range of 650–800 nm peaking at 708 nm, corresponding to the 2Eg → 4A2g transition of Mn4+ ions. Mn4+ doping concentration-dependent luminescence properties are studied in detail, and the concentration quenching mechanism is also investigated. Particularly, the internal quantum efficiency of CMLW:Mn4+ phosphors reaches as high as 44%, and their PL spectra match well with the absorption spectrum of phytochrome PFR (PFR stands for far-red-absorbing form of phytochrome). Furthermore, a prototype LED device is fabricated by coating the as-prepared CMLW:0.8%Mn4+ phosphors on a 460 nm blue LED chip, which produces bright far-red emissions upon 20–300 mA driving currents. This work reveals that the newly discovered far-red-emitting CMLW:Mn4+ phosphors hold great potential for application in indoor plant cultivation.  相似文献   

19.
Multifunctional nanocomposites with magnetic and luminescent properties were synthesized by a combination process of hydrothermal and sol–gel techniques. In this process, multiwalled carbon nanotubes (MWNTs) were decorated with Fe3O4 beads, forming Fe3O4/MWNTs nanoparticles. Then, the surface of Fe3O4/MWNTs samples was functionalized by the deposition of YVO4:Eu3+ phosphors. X-ray diffraction, field emission scanning electron microscopy, energy disperse X-ray spectroscopy, transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. The results reveal that the nanocomposites exhibit high magnetization (38 emu/g) and show the characteristic emission of Eu3+ (5D0 → 7F1–4). This functionalized nanocomposite is expected to find potential applications in biomedical areas.  相似文献   

20.
Zinc-cobalt molybdate composites (Zn1–xCoxMoO4; x = 0, 0.3, 0.5, 0.7, 1) were synthesised by a simple co-precipitation method and characterised by thermogravimetric/differential thermal analysis (TG/DTA), Fourier transform-infrared (FT-IR), Fourier transform Raman (FT-Raman) spectroscopy, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM/EDAX) and transmission electron microscopy (TEM). The surface area was calculated by BET analysis in the adsorption/desorption isotherm. The humidity sensing properties of zinc-cobalt molybdates were tested by dc electrical measurements at different relative humidity environments (RH = 5–98%). The electrical resistance of the composites linearly decreases and the maximum sensitivity of 3672 ± 110 was observed for the Zn0.3Co0.7MoO4 (ZnCM-4) composite towards humidity, which is calculated by the relation Sf = R5%/R98%, where the response time is 200 s and the recovery time is 100 s. Photoluminescence (PL) measurement at the room temperature of ZnM-1 composite exhibited a blue emission peak at 475 nm (λem) when excited at a wavelength (λex) of 430 nm. During Co2+ substitution in Zn2+ matrix, a green and red emission peak was observed when excited at a wavelength (λex) of 520 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号