首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 707 毫秒
1.
Bingel–Hirsch reactions of trimetallic nitride clusterfullerenes (NCFs) generally yield methanofullerene (cyclopropane) adducts instead of singly bonded derivatives, which have been reported for monometallofullerenes. Herein, we report the synthesis and characterization of the Bingel–Hirsch derivative of a mixed metal nitride clusterfullerene (MMNCF) TiY2N@Ih‐C80. Surprisingly, in contrast to the reported Bingel–Hirsch cyclopropane adducts of the analogous NCF Y3N@Ih‐C80, the Bingel–Hirsch derivative of TiY2N@Ih‐C80 is the first singly bonded monoadduct (labeled as TiY2N@C80‐Mono) to be reported, which was determined unambiguously by single‐crystal X‐ray crystallography. Besides, the reactivity of TiY2N@Ih‐C80 was found to be significantly improved relative to that of Y3N@Ih‐C80. Upon substituting one endohedral yttrium (Y) atom of Y3N@Ih‐C80 with titanium (Ti), the Bingel–Hirsch derivative changes from the cyclopropane to the singly bonded monoadduct, revealing that not only the reactivity but also the addition pattern of NCFs can be manipulated simultaneously through one endohedral metal atom substitution.  相似文献   

2.
An extensive theoretical study of the Bingel–Hirsch addition of bromomalonate on scandium nitride endohedral fullerenes has been carried out. The prototypical and highly symmetrical Sc3N@Ih‐C80, with a structure that satisfies the isolated pentagon rule (IPR), and the non‐IPR Sc3N@D3(6140)‐C68 fullerene show analogous reaction paths despite the distinct topology of the carbon networks and different rotation freedom of the internal nitride cluster. For the two metallofullerenes, our results predict that the reaction takes place under kinetic control yielding open‐cage fulleroids on [6,6] bonds, which is in good agreement with experimental data. The theoretical studies also show that predicting the reactivity of endohedral metallofullerenes is not straightforward and often an accurate analysis of the potential energy surface is required.  相似文献   

3.
A series of compounds with Sc3N@Ih-C80 in the neutral, monomeric, and dimeric anion states have been prepared in the crystalline form and their molecular structures and optical and magnetic properties have been studied. The neutral Sc3N@Ih-C80 ⋅ 3 C6H4Cl2 ( 1 ) and (Sc3N@Ih-C80)3(TPC)2 ⋅ 5 C6H4Cl2 ( 2 , TPC=triptycene) compounds both crystallized in a high-symmetry trigonal structure. The reduction of Sc3N@Ih-C80 to the radical anion resulted in dimerization to form diamagnetic singly bonded (Sc3N@Ih-C80)2 dimers. In contrast to {[2.2.2]cryptand(Na+)}2(Sc3N@Ih-C80)2 ⋅ 2.5 C6H4Cl2 ( 3 ) with strongly disordered components, we synthesized new dimeric phases {[2.2.2]cryptand- (K+)}2(Sc3N@Ih-C80)2 ⋅ 2 C6H4Cl2 ( 4 ) and {[2.2.2]cryptand- (Cs+)}2(Sc3N@Ih-C80)2 ⋅ 2 C6H4Cl2 ( 5 ) in which only one major dimer orientation was found. The thermal stability of the (Sc3N@Ih-C80)2 dimers was studied by EPR analysis of 3 to show their dissociation in the 400–460 K range producing monomeric Sc3N@Ih-C80.− radical anions. This species shows an EPR signal with a hyperfine splitting of 5.8 mT. The energy of the intercage C−C bond was estimated to be 234±7 kJ mol−1, the highest value among negatively charged fullerene dimers. The EPR spectra of crystalline (Bu3MeP+)3(Sc3N@Ih-C80.−)3 ⋅ C6H4Cl2 ( 6 ) are presented for the first time. The salt shows an asymmetric EPR signal, which could be fitted by three lines. Two lines were attributed to Sc3N@Ih-C80.−. Hyperfine splitting is manifested above 180 K due to the hyperfine interaction of the electron spin with the three scandium atoms (a total of 22 lines with an average splitting of 5.32 mT are observed at 220 K). Furthermore, each of the 22 lines is additionally split into six lines with an average separation of 0.82 mT. The large splitting indicates intrinsic charge and spin density transfer from the fullerene cage to the Sc3N cluster. Both the monomeric and dimeric Sc3N@Ih-C80 anions show an intrinsic shift of the IR bands attributed to the Sc3N cluster and new bands corresponding to these species appear in the NIR range of their UV/Vis/NIR spectra, which allows these anions to be distinguished from neutral species.  相似文献   

4.
In this work, the Bingel–Hirsch addition of diethylbromomalonate to all non‐equivalent bonds of Sc3N@D3h‐C78 was studied using density functional theory calculations. The regioselectivities observed computationally allowed the proposal of a set of rules, the predictive aromaticity criteria (PAC), to identify the most reactive bonds of a given endohedral metallofullerene based on a simple evaluation of the cage structure. The predictions based on the PAC are fully confirmed by both the computational and experimental exploration of the Bingel–Hirsch reaction of Sc3N@D5h‐C80, thus indicating that these rules are rather general and applicable to other isolated pentagon rule endohedral metallofullerenes.  相似文献   

5.
Bingel–Hirsch derivatives of the trimetallic nitride template endohedral metallofullerenes (TNT‐EMFs) Sc3N@Ih‐C80 and Lu3N@Ih‐C80 were prepared by reacting these compounds with 2‐bromodiethyl malonate, 2‐bromo‐1,3‐dipyrrolidin‐1‐ylpropane‐1,3‐dionate bromide, and 9‐bromo fluorene. The mono‐adducts were isolated and their 1H NMR spectra showed that the addition occurred with high regioselectivity at the [6,6] bonds of the Ih‐C80 fullerene cage. Electrochemical analysis showed that the reductive electrochemistry behavior of these derivatives is irreversible at a scan rate of 100 mV s?1, which is comparable to the behavior of the pristine fullerene species. The first reduction potential of each derivative is either cathodically or anodically shifted by a different value, depending on the attached addend. Bis‐adducts containing EtOOC‐C‐COOEt and HC‐COOEt addends were isolated by HPLC and in the case of Sc3N@Ih‐C80 the first reduction potential exhibits a larger shift towards negative potentials when compared to the mono‐adduct. This observation is important for designing acceptor materials for the construction of bulk heterojunction (BHJ) organic solar cells, since the polyfunctionalization not only increases the solubility of the fullerene species but also offers a promising approach for bringing the LUMO energy levels closer for the donor and the acceptor materials.  相似文献   

6.
The reactions of novel S‐heterocyclic carbenes (SHCs), which were prepared by the cycloaddition of disilenes and digermenes to CS2, with C60 and Sc3N@Ih‐C80 afforded the corresponding methano‐bridged fullerenes. The [6,6]‐closed and [6,6]‐open structures were characterized for the SHC adducts of C60 and Sc3N@Ih‐C80, respectively. These derivatives exhibited relatively low oxidation potentials, indicative of the electron‐donating effects of the SHC addends. The electronic properties of the SHC derivatives were clarified by the density functional theory calculations.  相似文献   

7.
《化学:亚洲杂志》2017,12(12):1391-1399
Photochemical carbosilylation of Sc3N@Ih ‐C80 with silirane 1 afforded two corresponding [5,6]‐adducts, 2 and 3 , and a [6,6]‐adduct, 4 . The structural and electronic properties of these products were characterized by means of spectroscopic, electrochemical, and theoretical methods. The structure of 2 was disclosed by means of single‐crystal X‐ray crystallographic analysis. Thermal isomerization of 3 to 2 was observed, whereas that of 2 to 3 proceeded less efficiently at 100 °C. Upon heating under the same conditions, adduct 4 underwent facile decomposition to afford Sc3N@Ih ‐C80, or isomerized into small amounts of 2 and 3 . The relative stabilities of 2 , 3 , and 4 were rationalized through the results of theoretical calculations. In contrast, adducts 2 , 3 , and 4 were stable under the photolytic conditions employed for carbosilylation. The photochemical functionalization of Sc3N@Ih ‐C80 represents a convenient synthetic method to obtain thermally labile fullerene‐based products.  相似文献   

8.
The first pyrrolidine and cyclopropane derivatives of the trimetallic nitride templated (TNT) endohedral metallofullerenes Ih‐Sc3N@C80 and Ih‐Y3N@C80 connected to an electron‐donor unit (i.e., tetrathiafulvalene, phthalocyanine or ferrocene) were successfully prepared by 1,3‐dipolar cycloaddition reactions of azomethine ylides and Bingel–Hirsch‐type reactions. Electrochemical studies confirmed the formation of the [6,6] regioisomers for the Y3N@C80‐based dyads and the [5,6] regioisomers in the case of Sc3N@C80‐based dyads. Similar to other TNT endohedral metallofullerene systems previously synthesized, irreversible reductive behavior was observed for the [6,6]‐Y3N@C80‐based dyads, whereas the [5,6]‐Sc3N@C80‐based dyads exhibited reversible reductive electrochemistry. Density functional calculations were also carried out on these dyads confirming the importance of these structures as electron transfer model systems. Furthermore, photophysical investigations on a ferrocenyl–Sc3N@C80‐fulleropyrrolidine dyad demonstrated the existence of a photoinduced electron‐transfer process that yields a radical ion pair with a lifetime three times longer than that obtained for the analogous C60 dyad.  相似文献   

9.
In this work a detailed investigation of the exohedral reactivity of the most important and abundant endohedral metallofullerene (EMF) is provided, that is, Sc3N@Ih‐C80 and its D5h counterpart Sc3N@D5h‐C80, and the (bio)chemically relevant lutetium‐ and gadolinium‐based M3N@Ih/D5h‐C80 EMFs (M=Sc, Lu, Gd). In particular, we analyze the thermodynamics and kinetics of the Diels–Alder cycloaddition of s‐cis‐1,3‐butadiene on all the different bonds of the Ih‐C80 and D5h‐C80 cages and their endohedral derivatives. First, we discuss the thermodynamic and kinetic aspects of the cycloaddition reaction on the hollow fullerenes and the two isomers of Sc3N@C80. Afterwards, the effect of the nature of the metal nitride is analyzed in detail. In general, our BP86/TZP//BP86/DZP calculations indicate that [5,6] bonds are more reactive than [6,6] bonds for the two isomers. The [5,6] bond D 5h ‐b , which is the most similar to the unique [5,6] bond type in the icosahedral cage, I h ‐a , is the most reactive bond in M3N@D5h‐C80 regardless of M. Sc3N@C80 and Lu3N@C80 give similar results; the regioselectivity is, however, significantly reduced for the larger and more electropositive M=Gd, as previously found in similar metallofullerenes. Calculations also show that the D5h isomer is more reactive from the kinetic point of view than the Ih one in all cases which is in good agreement with experiments.  相似文献   

10.
Rare‐earth metals have been mostly entrapped into fullerene cages to form endohedral clusterfullerenes, whereas non‐Group‐3 transition metals that can form clusterfullerenes are limited to titanium (Ti) and vanadium (V), and both are exclusively entrapped within an Ih‐C80 cage. Non‐Group‐3 transition‐metal‐containing endohedral fullerenes based on a C80 cage with D5h symmetry, VxSc3?xN@D5h‐C80 (x=1, 2), have now been synthesized, which exhibit two variable cluster compositions. The molecular structure of VSc2N@D5h‐C80 was unambiguously determined by X‐ray crystallography. According to a comparative study with the reported Ti‐ and V‐containing clusterfullerenes based on a Ih‐C80 cage and the analogous D5h‐C80‐based metal nitride clusterfullerenes containing rare‐earth metals only, the decisive role of the non‐Group‐3 transition metal on the formation of the corresponding D5h‐C80‐based clusterfullerenes is unraveled.  相似文献   

11.
The thermodynamic and dynamic stabilities of Sc3X@C80 (X = C, N, and O) are explored via density functional theory combined with statistical thermodynamic analysis and ab initio molecular dynamics. It is the first time to comprehensively consider the effect of nonmetal atoms on trimetallic endohedral clusterfullerenes. Relative to Sc3X@Ih (31924)-C80 (X = N and O) with general six-electron transfer, an intriguing electronic structure of unexplored Sc3C@D5h (31923)-C80 with thermodynamic and dynamic stabilities is clearly disclosed. Natural bond orbitals and charge decomposition analysis simultaneously suggest that one unpaired electron appears on the cage for neutral Sc3C@D5h (31923)-C80, which could be prospectively stabilized by effective exohedral derivatization and ionization in the future. Moreover, isoelectronic endohedral clusterfullerenes, (Sc3C@C80), Sc3N@C80, and (Sc3O@C80)+, are also uniquely taken into account. The geometries, electronic structures, reactivities, and reactive sites of isoelectronic species are examined, and it turns out that all the three isoelectronic species would rather electrophilic than nucleophilic reactions. © 2019 Wiley Periodicals, Inc.  相似文献   

12.
Trifluoromethylated derivatives of Sc3N@Ih‐C80 and Sc3N@D5h‐C80 were synthesized by the reaction with CF3I at 440 °C. HPLC separation of the mixture of Sc3N@D5h‐C80(CF3)n derivatives resulted in isolation and X‐ray structure determination of Sc3N@D5h‐C80(CF3)16, which represents a precursor of the known Sc3N@D5h‐C80(CF3)18. Among the CF3 derivatives of Sc3N@Ih‐C80, two new isomers of Sc3N@Ih‐C80(CF3)14 ( Sc‐14‐VI and Sc‐14‐VII ) were isolated by HPLC, and their molecular structures were determined by X‐ray diffraction, thus enabling a comprehensive comparison of altogether seven isomers. Two types of addition patterns with different orientations of the Sc3N cluster relative to the Ih‐C80 fullerene cage were established. In particular, Sc‐14‐VII represents a direct precursor of the known Sc3N@Ih‐C80(CF3)16‐ II . All molecular structures exhibit an ordered position of a Sc3N cluster inside the fullerene C80 cage.  相似文献   

13.
Based on the different oxidation potentials of endohedral fullerenes Sc3N@C80 Ih and D5h and Sc3N@C78, an efficient and useful method that avoids HPLC has been developed for their separation. Selective chemical oxidation of the Sc3N@D5h‐C80 isomer and Sc3N@C78 by using an acetylferrocenium salt [Fe(COCH3C5H4)Cp]+ followed by column chromatographic separation and reduction with CH3SNa resulted in the isolation of pure Sc3N@Ih‐C80, Sc3N@C78, and a mixture of Sc3N@D5h‐C80 and Sc3N@C68.  相似文献   

14.
The effects of exohedral moieties and endohedral metal clusters on the isomerization of M3N@IhC80 products from the Prato reaction through [1,5]‐sigmatropic rearrangement were systematically investigated by using three types of fulleropyrrolidine derivatives and four different endohedral metal clusters. As a result, all types of derivatives provided the same ratios of the isomers for a given trimetallic nitride template (TNT) as the thermodynamic products, thus indicating that the size of the endohedral metal clusters inside C80 was the single essential factor in determining the equilibrium between the [6,6]‐isomer (kinetic product) and the [5,6]‐isomer. In all the derivatives, the [6,6]‐ and [5,6]‐Prato adducts with larger metal clusters, such as Y3N and Gd3N, were equally stable, which is in good agreement with DFT calculations. The reaction rate of the rearrangement was dependent on both the substituent of exohedral functional groups and the endohedral metal‐cluster size. Further DFT calculations and 13C NMR spectroscopic studies were employed to rationalize the equilibrium in the rearrangement between the [6,6]‐ and [5,6]‐fulleropyrrolidines.  相似文献   

15.
Endohedral metallofullerenes (EMFs) have novel structures and properties that are closely associated with the internal metallic species. Benzyl radical additions have been previously shown to form closed‐shell adducts by attaching an odd number of addends to open‐shell EMFs (such as Sc3C2@Ih‐C80) whereas an even number of groups are added to closed‐shell EMFs (for example Sc3N@Ih‐C80). Herein we report that benzyl radical addition to the closed‐shell La2@Ih‐C80 forms a stable, open‐shell monoadduct instead of the anticipated closed‐shell bisadduct. Single‐crystal X‐ray diffraction results show the formation of a stable radical species. In this species, the La?La distance is comparable to the theoretical value of a La?La covalent bond and is shorter than reported values for other La2@Ih‐C80 derivatives, providing unambiguous evidence for the formation of direct La?La bond.  相似文献   

16.
Purified samples of Ho3N@C2(22010)-C78 and Tb3N@C2(22010)-C78 have been isolated by two distinct processes from the rich array of fullerenes and endohedral fullerenes present in carbon soot from graphite rods doped with Ho2O3 or Tb4O7. Crystallographic analysis of the endohedral fullerenes as cocrystals with Ni(OEP) (in which OEP is the dianion of octaethylporphyrin) shows that both molecules contain the chiral C2(22010)-C78 cage. This cage does not obey the isolated pentagon rule (IPR) but has two sites where two pentagons share a common C−C bond. These pentalene units bind two of the metal ions, whereas the third metal resides near a hexagon of the cage. Inside the cages, the Ho3N or Tb3N unit is planar. Ho3N@C2(22010)-C78 and Tb3N@C2(22010)-C78 use the same cage previously found for Gd3N@C2(22010)-C78 rather than the IPR-obeying cage found in Sc3N@D3h-C78.  相似文献   

17.
The two regioisomers of endohedral pyrrolidinodimetallofullerenes M2@Ih‐C80(CH2)2NTrt (M=La, Ce; Trt=trityl) were synthesized, isolated, and characterized. X‐ray crystallographic analyses of [6,6]‐La2@Ih‐C80(CH2)2NTrt and [6,6]‐Ce2@Ih‐C80(CH2)2NTrt revealed that the encapsulated metal atoms are located at the slantwise positions on the mirror plane that parallels the pyrrolidine ring. Paramagnetic NMR analyses of [6,6]‐ and [5,6]‐Ce2@Ih‐C80(CH2)2NTrt were also carried out to clarify the metal positions. As for the [6,6]‐adduct, the metal positions obtained by paramagnetic NMR analysis agree well with the X‐ray structure. In contrast, paramagnetic NMR analysis of the [5,6]‐adduct showed that the two Ce atoms are collinear with the pyrrolidine ring. We also compared the observed paramagnetic effects of the pyrrolidinodimetallofullerenes with those of other cerium‐encapsulating fullerene derivatives such as bis‐silylated Ce2@Ih‐C80 and a carbene adduct of Ce2@Ih‐C80. We found that the metal positions can be explained by the electrostatic potential maps of the corresponding [6,6]‐ and [5,6]‐adducts of [Ih‐C80(CH2)2NTrt]6?. These findings clearly show that metal positions inside fullerene cages can be controlled by means of the addition positions of the addends. In addition, the radical anions of the pyrrolidinodimetallofullerenes were prepared by bulk controlled‐potential electrolysis and characterized by X‐band EPR spectral study.  相似文献   

18.
The chemical functionalization of endohedral metallofullerenes (EMFs) has aroused considerable interest due to the possibility of synthesizing new species with potential applications in materials science and medicine. Experimental and theoretical studies on the reactivity of endohedral metallofullerenes are scarce. To improve our understanding of the endohedral metallofullerene reactivity, we have systematically studied with DFT methods the Diels–Alder cycloaddition between s‐cis‐1,3‐butadiene and practically all X@Ih‐C80 EMFs synthesized to date: X=Sc3N, Lu3N, Y3N, La2, Y3, Sc3C2, Sc4C2, Sc3CH, Sc3NC, Sc4O2 and Sc4O3. We have studied both the thermodynamic and kinetic regioselectivity, taking into account the free rotation of the metallic cluster inside the fullerene. This systematic study has been made possible through the use of the frozen cage model (FCM), a computationally cheap approach to accurately predicting the exohedral regioselectivity of cycloaddition reactions in EMFs. Our results show that the EMFs are less reactive than the hollow Ih‐C80 cage. Except for the Y3 cluster, the additions occur predominantly at the [5,6] bond. In many cases, however, a mixture of the two possible regioisomers is predicted. In general, [6,6] addition is favored in EMFs that have a larger charge transfer from the metal cluster to the cage or a voluminous metal cluster inside. The present guide represents the first complete and exhaustive investigation of the reactivity of Ih‐C80‐based EMFs.  相似文献   

19.
Herein, we report divergent additions of 2,2′-diazidobiphenyls to C60 and Sc3N@Ih-C80. In stark contrast to that of the previously reported bis-azide additions, the unexpected cascade reaction leads to the dearomative formation of azafulleroids 2 fused with a 7-6-5-membered ring system in the case of C60. In contrast, the corresponding reaction with Sc3N@Ih-C80 switches to the C−H insertion pathway, thereby resulting in multiple isomers, including a carbazole-derived [6,6]-azametallofulleroid 3 and a [5,6]-azametallofulleroid 4 and an unusual 1,2,3,6-tetrahydropyrrolo[3,2-c]carbazole-derived metallofullerene 5 , whose molecular structures have been unambiguously determined by single-crystal X-ray diffraction analyses. Among them, the addition type of 5 is observed for the first time in all reported additions of azides to fullerenes. Furthermore, unexpected isomerizations from 3 to 5 and from 4 to 5 have been discovered, providing the first examples of the isomerization of an azafulleroid to a carbazole-derived fullerene rather than an aziridinofullerene. In particular, the isomerism of the [5,6]-isomer 4 to the [5,6]-isomer 5 is unprecedented in fullerene chemistry, contradicting the present understanding that isomerization generally occurs between [5,6]- and [6,6]-isomers. Control experiments have been carried out to rationalize the reaction mechanism. Furthermore, representative azafulleroids have been applied in organic solar cells, thereby resulting in improved power conversion efficiencies.  相似文献   

20.
An attempt to achieve heterocyclic cycloadducts of Sc3N@Ih-C80via reaction with Ph2C Created by potrace 1.16, written by Peter Selinger 2001-2019 O, PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 CPh or PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 N in the presence of tetrabutylammonium hydroxide (TBAOH) stored in CH3OH led to the formation of the unexpected bismethoxyl adducts of Sc3N@Ih-C80 (1 and 2). Further studies reveal that TBAOH in CH3OH can boost the CH3O addition efficiently, regardless of the presence of other reagents. Single-crystal X-ray diffraction results firmly assign the molecular structures of 1 and 2 as respective 1,4- and 1,2-bismethoxyl adducts, and reveal unusual relationships between the internal Sc3N cluster and the addition modes, in addition to the unusual packing mode in view of the orientation of the methoxyl groups. Electrochemical results demonstrate smaller electrochemical gaps for 1 and 2, relative to that of Sc3N@Ih-C80, confirming their better electroactive properties. Finally, a plausible reaction mechanism involving anion addition and a radical reaction was proposed, presenting new insights into the highly selective reactions between the methoxyl anion and metallofullerenes. 1 and 2 represent the first examples of methoxyl derivatives of metallofullerenes. This work not only presents a novel and facile strategy for the controllable synthesis of alkoxylated metallofullerene derivatives, but also provides new non-cycloadducts for the potential applications of EMFs.

An attempt to achieve heterocyclic cycloadducts of Sc3N@Ih-C80via reaction with Ph2C Created by potrace 1.16, written by Peter Selinger 2001-2019 O, PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 CPh or PhC Created by potrace 1.16, written by Peter Selinger 2001-2019 N in the presence of tetrabutylammonium hydroxide (TBAOH) stored in CH3OH led to the formation of the unexpected bismethoxyl adducts of Sc3N@Ih-C80 (1 and 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号