首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Conversion of CO2 into chemicals is a promising strategy for CO2 utilization, but its intricate transformation pathways and insufficient product selectivity still pose challenges. Exploiting new catalysts for tuning product selectivity in CO2 hydrogenation is important to improve the viability of this technology, where reverse water-gas shift (RWGS) and methanation as competitive reactions play key roles in controlling product selectivity in CO2 hydrogenation. So far, a series of metal-based catalysts with adjustable strong metal–support interactions, metal surface structure, and local environment of active sites have been developed, significantly tuning the product selectivity in CO2 hydrogenation. Herein, we describe the recent advances in the fundamental understanding of the two reactions in CO2 hydrogenation, in terms of emerging new catalysts which regulate the catalytic structure and switch reaction pathways, where the strong metal–support interactions, metal surface structure, and local environment of the active sites are particularly discussed. They are expected to enable efficient catalyst design for minimizing the deep hydrogenation and controlling the reaction towards the RWGS reaction. Finally, the potential utilization of these strategies for improving the performance of industrial catalysts is examined.

A series of metal oxide, phosphate, alloy, and carbide-based catalysts for selective CO2 hydrogenation are summarized, showing their abilities to switch CO2 methanation to RWGS.  相似文献   

2.
Electrochemical reduction of CO2 provides a sustainable solution to address the intermittent renewable electricity storage while recycling CO2 to produce fuels and chemicals. Highly efficient catalytic materials and reaction systems are required to drive this process economically. This Review highlights the new trends in advancing the electrochemical reduction of CO2 by developing and designing nanostructured heterogeneous catalysts. The activity, selectivity and reaction mechanism are significantly affected by the nano effects in nanostructured heterogeneous catalysts. In the future, energy efficiency and current density in electrochemical reduction of CO2 need to be further improved to meet the requirements for practical applications.  相似文献   

3.
Cu catalysts are well-known for their good performance in CO2 conversion. Compared to CO and CH4 production, C2 products have higher volumetric energy densities and are more valuable in industrial applications. In this work, we screened the catalytic ability of C2 production on several 1D Cu atomic chain structures and find that Cu edge-decorated zigzag graphene nanoribbons (Cu−ZGNR) are capable of catalyzing CO2 conversion to ethanol, and CH3CH2OH is the main C2 product with a maximum free energy change of 0.60 eV. The planar tetracoordinate carbon structures in Cu-ZGNR provide unique chemical bonding features for catalytic reaction on the Cu atoms. Detailed mechanism analyses with transition states search show that CO* dimerization is favored against CHO* formation in the reaction. By adjusting the CO* coverage, the selectivity of the C2 product can be enhanced owing to less pronounced steric effects for COCHO*, which is feasible under experimental conditions. This study expands the catalyst family for C2 products from CO2 based on nano carbon structures with new features.  相似文献   

4.
The dispersion of nickel catalysts is crucial for the catalytic ability of CO2 methanation, which can be influenced by the fabrication method and the operation process of the catalysts. Therefore, a series of fabrication methods, including ultrasonic, hydrothermal, microwave, and co-precipitation, have been applied to prepare 25Ni-5Er-Al2O3 catalysts. The fabrication method can partially influence the structural and catalytic activity of the nickel aluminate catalysts. Among the catalysts modified by Erbium prepared with various methods, the catalyst fabricated by ultrasonic pathway exhibited better catalytic performance and CH4 selectivity especially, at a temperature (400 ℃). The impact of the temperature of the reaction (200–500 °C) was examined under a stoichiometric precursor ratio of (H2:CO2) = 4: 1, atmospheric pressure, and space velocity (GHSV) of 25000 mL/gcath. The results demonstrate that the ultrasonic method is strongly efficient for fabricating Ni-based catalysts with a high BET surface area of about 190.33 m2g?1. The catalyst composed via the ultrasonic technique has 69.38 % carbon dioxide conversion and 100 % methane selectivity at 400 °C for excellent catalytic performance in CO2 methanation reactions. The fabrication effect can be associated with its high surface area, which is achieved via the hot spot mechanism. Besides, the addition of Erbium promotes the Ni dispersion on the supports and stimulates the positive reaction because of the erbium oxygen vacancies.  相似文献   

5.
We investigate the catalytic activity of the subnanometer‐sized bimetallic Au19Pt cluster for oxidation of CO via first‐principles density functional theory calculations. For this purpose we consider two structurally similar and energetically close homotops of the Au19Pt cluster with the Pt atom occupying an edge (Td‐E) or a facet (Td‐S) site of a 20‐atom tetrahedron. Using these homotops as catalysts we calculate the complete reaction paths and the thermodynamic functions corresponding to the oxidation of CO to CO2. It is found that the oxidation of CO on the Td‐S isomer occurs through a smaller reaction barrier (0.38 eV) as compared with that on the Td‐E isomer (0.70 eV), although the activation of O2 on the latter is much higher than that on the former. Therefore, a clear conclusion is that a higher O2 activation, which is generally believed to be the key factor for CO oxidation, solely cannot determine the catalytic efficiency of the Au‐Pt bimetallic clusters. In addition, we find a stronger CO adsorption on the Td‐E isomer (2.06 eV) as compared with that on the Td‐S isomer (1.68 eV). Although stronger CO adsorption on the Td‐E isomer leads to a higher O2 activation; however, high value of CO adsorption energy deteriorates the catalytic activity of the Td‐E isomer towards the CO oxidation reaction. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
The increase of atmospheric CO2 concentration has caused many environmental issues. Electrochemical CO2 reduction reaction(CO2RR) has been considered as a promising strategy to mitigate these challenges. The electrocatalysts with a low overpotential, high Faradaic efficiency, and excellent selectivity are of great significance for the CO2RR. Carbon-based materials including metal-free carbon catalysts and metal-based carbon catalysts have shown great p...  相似文献   

7.
Carbon dioxide (CO2) is an easily available renewable carbon source that can be used as a comonomer in the catalytic ring-opening polymerization of epoxides to form aliphatic polycarbonates. Herein, a series of new Salen-Co(III) bifunctional catalysts were synthesized for the first time, and they were studied to catalyze the copolymerization of CO2 and propylene oxide (PO)/cyclohexene oxide (CHO). At the same time, the effects of reaction conditions (electronic effect, temperature, time) on catalytic activity and selectivity were investigated. The results show that the Salen-Co(III) complexes with electron-withdrawing groups have higher selectivity and activity for propylene carbonate (PPC)/cyclohexylene carbonate (PCHC). At the same time, the Salen-Co(III) complexes can better catalyze the copolymerization of CHO and CO2 than that of PO and CO2. The catalytic efficiency of the four complexes increased with increasing temperature, and the best reaction condition is 80°C, 30 min and 2 MPa of CO2.  相似文献   

8.
Electrochemical reduction of carbon dioxide has been attracting extensive interest due to its fundamental significance both in environmental protection and in energy storage. In this review, recent progress in the manipulation of the catalytic activity and selectivity of various transition metals towards CO2 reduction reaction (CO2RR) is summarized within the context of deliberate surface functionalization by select organic ligands. This is primarily manifested in three effects, interfacial charge transfer, suppression of hydrogen evolution, and stabilization of key reaction intermediates. The review is concluded with a perspective of the challenges and promises in the structural engineering of metal catalysts for enhanced CO2RR performance.  相似文献   

9.
Based on first-principles calculations, the potential of Ti2CO2 monolayer (MXene) as a single-atom catalyst (SAC) support for 3d transition metal (TM) atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) is studied for CO oxidation. We first screen the support effect according to the stability of a single metal atom and find that Sc and Ti supported on Ti2CO2 have stronger adsorption energy than the cohesive energy of their bulk counterparts and therefore, we selected Sc and Ti supported on Ti2CO2 for further catalytic reactions. The stability and the potential catalytic reactivity are verified by electronic structure and charge transfer analysis. Both Eley–Rideal (ER) and Langmuir–Hinshelwood (LH) mechanisms are considered in this study, and lower energy barriers of 0.002 and 0.37 eV were found in the ER mechanism compared to the LH mechanism, which are 0.25 and 0.34 eV for Sc and Ti catalysts, respectively. Moreover, kinetic ER and LH mechanisms are favorable for both Sc- and Ti/Ti2CO2 because of the comparable energy barrier to other metals and SAC supported on 2D materials. However, Ti/Ti2CO2 catalyst is thermodynamically unfavorable. Based on these calculations, we propose that Sc supported on Ti2CO2 is the best catalyst for CO-oxidation. The current study not only broadens the scope of the single-atom Sc catalyst but also extends the consideration of MXene support for catalyst optimization.  相似文献   

10.
Precise design and tuning of the micro-atomic structure of single atom catalysts (SACs) can help efficiently adapt complex catalytic systems. Herein, we inventively found that when the active center of the main group element gallium (Ga) is downsized to the atomic level, whose characteristic has significant differences from conventional bulk and rigid Ga catalysts. The Ga SACs with a P, S atomic coordination environment display specific flow properties, showing CO products with FE of ≈92 % at −0.3 V vs. RHE in electrochemical CO2 reduction (CO2RR). Theoretical simulations demonstrate that the adaptive dynamic transition of Ga optimizes the adsorption energy of the *COOH intermediate and renews the active sites in time, leading to excellent CO2RR selectivity and stability. This liquid single atom catalysts system with dynamic interfaces lays the foundation for future exploration of synthesis and catalysis.  相似文献   

11.
《中国化学快报》2020,31(7):1966-1969
Formaldehyde (HCHO) is one kind of common indoor toxic pollutant, the catalytic oxidation degradation of formaldehyde at room temperature is desired. In this work, a new single atomic catalyst (SAC), Al doped graphene, for the catalytic oxidation of HCHO molecules was proposed through density function theory (DFT) calculations. It is found that Al atoms can be adsorbed on graphene stably without aggression. Then HCHO can be effectively oxidized into CO2 and H2O in the presence of O2 molecules on Al doped graphene with a low energy barrier of 0.82 eV and releasing energy of 2.29 eV with the pathway of HCHO → HCOOH → CO → CO2. The oxidation reaction can happen promptly with reaction time τ = 56.9 s at the speed control step at room temperature. Therefore, this work proposed a high-performance catalyst Al-doped graphene without any noble metal for HCHO oxidation at ambient temperature, and corresponding oxidation pathway and mechanism are also deeply understood.  相似文献   

12.
Although progress has been made to improve photocatalytic CO2 reduction under visible light (λ>400 nm), the development of photocatalysts that can work under a longer wavelength (λ>600 nm) remains a challenge. Now, a heterogeneous photocatalyst system consisting of a ruthenium complex and a monolayer nickel‐alumina layered double hydroxide (NiAl‐LDH), which act as light‐harvesting and catalytic units for selective photoreduction of CO2 and H2O into CH4 and CO under irradiation with λ>400 nm. By precisely tuning the irradiation wavelength, the selectivity of CH4 can be improved to 70.3 %, and the H2 evolution reaction can be completely suppressed under irradiation with λ>600 nm. The photogenerated electrons matching the energy levels of photosensitizer and m‐NiAl‐LDH only localized at the defect state, providing a driving force of 0.313 eV to overcome the Gibbs free energy barrier of CO2 reduction to CH4 (0.127 eV), rather than that for H2 evolution (0.425 eV).  相似文献   

13.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

14.
Heterogeneously catalyzed N-formylation of amines to formamide with CO2/H2 is highly attractive for the valorization of CO2. However, the relationship of the catalytic performance with the catalyst structure is still elusive. Herein, mixed valence catalysts containing Cu2O/Cu interface sites were constructed for this transformation. Both aliphatic primary and secondary amines with diverse structures were efficiently converted into the desired formamides with good to excellent yields. Combined ex and in situ catalyst characterization revealed that the presence of Cu2O/Cu interface sites was vital for the excellent catalytic activity. Density functional theory (DFT) calculations demonstrated that better catalytic activity of Cu2O/Cu(111) than Cu(111) is attributed to the assistance of oxygen at the Cu2O/Cu interface (Ointer) in formation of Ointer-H moieties, which not only reduce the apparent barrier of HCOOH formation but also benefit the desorption of the desired N-formylated amine, leading to high activity and selectivity.  相似文献   

15.
Photocatalytic syngas (CO and H2) production with CO2 as gas source not only ameliorates greenhouse effect, but also produces valuable chemical feedstocks. However, traditional photocatalytic systems require noble metal or suffers from low yield. Here, we demonstrate that S vacancies ZnIn2S4 (VS-ZnIn2S4) nanosheets are an ideal photocatalyst to drive CO2 reduction into syngas. It is found that building S vacancies can endow ZnIn2S4 with stronger photoabsorption, efficient electron–hole separation, and larger CO2 adsorption, finally promoting both hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). The syngas yield of CO and H2 is therefore significantly increased. In contrast to pristine ZnIn2S4, the syngas yield over VS-ZnIn2S4 can be improved by roughly ≈4.73 times and the CO/H2 ratio is modified from 1:4.18 to 1:1. Total amount of syngas after 12 h photocatalysis is as high as 63.20 mmol g−1 without use of any noble metals, which is even higher than those of traditional noble metal-based catalysts in the reported literatures. This work demonstrates the critical role of S vacancies in mediating catalytic activity and selectivity, and highlights the attractive ability of defective ZnIn2S4 for light-driven syngas production.  相似文献   

16.
We have been exploring various new catalyst systems for the utilization of carbon dioxide as a soft oxidant in the catalytic dehydrogenation of ethylbenzene (EB) to styrene. The utilization of CO2 as a soft oxidant for the commercially important catalytic dehydrogenation of EB to styrene has received enormous attention recently due to its several attractive features. This review summarizes the results of our most recent findings on zirconia-based composite oxide catalyst systems exploited for this reaction. Under this systematic and comprehensive investigation various zirconia-based composite oxide catalysts namely, TiO2-ZrO2, MnO2-ZrO2, CeO2-ZrO2, K2O/TiO2-ZrO2, B2O3/TiO2-ZrO2 and CeO2-ZrO2/SBA-15 have been synthesized, characterized by various techniques and evaluated for the title reaction. Most of these composite oxide catalysts were found to exhibit very interesting physicochemical characteristics and exceptionally better catalytic properties for this reaction. As revealed by characterization results, a large number of acid–base sites with moderate strength are essential for a high conversion and product selectivity of this reaction with CO2 as the soft oxidant.  相似文献   

17.
High activity and high formation selectivity for aromatics in the dehydrocondensation reaction of methane were realized only on selected catalysts. The requisites of a metal and a zeolite support as the selected catalyst were described. However, the catalytic activity steadily declined even on the selected catalysts with time on stream because of coke accumulation. A stable catalytic activity was obtained when CO2 or CO was added into methane feed due to effective removal of coke from the catalyst surface by CO or CO2. The route from methane to aromatics and the formation process of active phase of catalyst were discussed.  相似文献   

18.
A series of transition metal-based catalysts, other than Pd or Pt-based catalysts, were investigated for catalytic amination of 2,6-dimethylphenol to 2,6-dimethylaniline in a fixed-bed reactor. Ni–Cu–Cr/γ-Al2O3 yielded satisfactory results with 82.08 % conversion and 47.24 % selectivity. The catalysts were characterized by H2-TPR and TEM, and the results obtained showed that the doped Cu and Cr could promote reduction of Ni/γ–Al2O3 and dispersion of the Ni. Reaction conditions, including reaction temperature, flow rate of hydrogen, and ammonia, were studied.  相似文献   

19.
Formic acid (FA) has been extensively studied as one of the most promising hydrogen energy carriers today. The catalytic decarboxylation of FA ideally leads to the formation of CO2 and H2 that can be applied in fuel cells. A large number of transition‐metal based homogeneous catalysts with high activity and selectivity have been reported for the selective FA dehydrogentaion. In this review, we discussed the recent development of C,N/N,N‐ligand and pincer ligand‐based homogeneous catalysts for the FA dehydrogenation reaction. Some representative catalysts are further evaluated by the CON/COF assessment (catalyst on‐cost number)/(catalyst on‐cost frequency). Conclusive remarks are provided with future challenges and opportunities.  相似文献   

20.
High activity and high formation selectivity for aromatics in the dehydrocondensation reaction of methane were realized only on selected catalysts. The requisites of a metal and a zeolite support as the selected catalyst were described. However, the catalytic activity steadily declined even on the selected catalysts with time on stream because of coke accumulation. A stable catalytic activity was obtained when CO2 or CO was added into methane feed due to effective removal of coke from the catalyst surface by CO or CO2. The route from methane to aromatics and the formation process of active phase of catalyst were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号