首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tri-layer magnetite/silica/poly(divinylbenzene) (Fe3O4/SiO2/PDVB) core-shell hybrid microspheres were prepared by distillation precipitation polymerization of divinylbenzene (DVB) in the presence of magnetite/3-(methacryloxyl)propyl trimethoxysilane (MPS) modified silica core-shell particles as seeds. The polymerization of DVB was performed in neat acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) as initiator to coat magnetite/MPS-modified silica particles through the capture of DVB oligomers with the aid of vinyl groups on the surface of inorganic seeds in absence of any stabilizer or surfactant. Other magnetite/silica/polymer tri-layer hybrid particles, such as magnetite/silica/poly(ethyleneglycol dimethacrylate) (Fe3O4/SiO2/PEGDMA) and magnetite/silica/poly(ethyleneglycol dimethacrylate-co-methacrylic acid) (Fe3O4/SiO2/P(EGDMA-co-MAA)) with various polarity and functionality, were also prepared by this procedure. Magnetite/silica/poly(N,N′-methylenebisacrylamide-co-methacrylic acid) (Fe3O4/SiO2/P(MBAAm-co-MAA)) were synthesized with unmodified magnetite/silica particles as seeds. The resultant tri-layer hybrid particles were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), dynamic light scattering, and vibrating sample magnetometer (VSM).  相似文献   

2.
G5.0‐OH PAMAM dendrimers were used to prepare fluorescent silver clusters with weaker ultraviolet irradiation reduction method, in which the molar ratio of Ag+ to PAMAM dendrimers was the key factor to determine the geometry and properties of silver nanoparticles. The results showed that because of G5.0‐OH PAMAM dendrimers as strong encapsulatores, when the molar ratios of Ag+ to PAMAM dendrimers was smaller than 5, the obtained Agn clusters (n<5) had line structures and "molecular‐like" properties, which were highly fluorescent and quite stable in aqueous solution. Whereas when the molar ratios were between 5 and 8, the obtained Agn clusters were 2D structures and their fluorescence was weaker. When the molar ratio was larger than 8, the structure of silver nanoparticles was 3D and no fluorescence was observed from the obtained silver nanoparticles.  相似文献   

3.
Novel silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres, in tens of micrometer size range, with patterned surface and core/shell structures were prepared by chemical reduction of Ag2CrO4-P(AM-co-MAA) composite microspheres in ethanol. Characterization with various techniques revealed that the chemical composition of the “shell” is dominated by Ag, but the “core” is dominated by the template, P(AM-co-MAA). It was also demonstrated that the surface morphology of the Ag-polymer composite microspheres is similar to that of their precursors and can be controlled to a certain extent by varying the composition of template copolymer, approaches, and amount of Ag2CrO4 deposited. This morphology transfer technique is also applicable for other silver salts-polymer composite microspheres. The same silver-polymer composite microspheres with very different morphology have also been prepared by utilizing this technique, but the different precursor microspheres, Ag3PO4-P(AM-co-MAA), were used. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
杨新林 《高分子科学》2011,29(3):342-351
Magnetically responsive hierarchical magnetite/silica/poly(ethyleneglycol dimethacrylate-co-4-vinylpyridine) (Fe3O4/SiO2/P(EGDMA-co-VPy)) tri-layer microspheres were used as stabilizers for gold metallic nanocolloids as a facilely recoverable catalyst with the reduction of 4-nitrophenol to 4-aminophenol as a model reaction. The magnetic microsphere stabilized gold metallic nanocolloids were prepared by in situ reduction of gold chloride trihydrate with borohydride as reductant via the stabilization effect of the pyridyl groups to gold nanoparticles on the surface of the outer shell-layer of the inorganic/polymer tri-layer microspheres.  相似文献   

5.
Morphological change of gold-dendrimer nanocomposites by laser irradiation   总被引:1,自引:0,他引:1  
Gold-dendrimer nanocomposites are prepared in aqueous solutions in the presence of poly(amidoamine)dendrimers (PAMAM) (generation 3 and 5) or poly(propyleneimine)dendrimers (PPI) (generation 3 and 4) by wet chemical NaBH(4) method. Thus prepared gold-dendrimer nanocomposites are irradiated by laser at 532 nm. UV-vis absorption spectroscopy and transmission electron microscopy reveal that the gold nanoparticles grow with the laser irradiation time as well as the fluence of the laser; in particular, the gold nanoparticles prepared at lower concentrations of PAMAM dendrimer as well as lower generations of PAMAM grow significantly. On the other hand, in the case of PPI dendrimers, the gold nanoparticles hardly grow by irradiation. In addition, dynamic light-scattering measurements show that the laser irradiation markedly promotes the association of the gold-PAMAM G3 dendrimer nanocomposites compared to that of the gold-PAMAM G5 dendrimer nanocomposites, while the sizes of association for the gold-PPI G3, G4 dendrimer nanocomposites hardly change by laser irradiation.  相似文献   

6.
Glassy carbon electrodes (GCE) were sequentially modified by cysteamine-capped gold nanoparticles (AuNp@cysteamine) and PAMAM dendrimers generation 4.5 bearing 128-COOH peripheral groups (GCE/AuNp@cysteamine/PAMAM), in order to explore their capabilities as electrochemical detectors of uric acid (UA) in human serum samples at pH 2. The results showed that concentrations of UA detected by cyclic voltammetry with GCE/AuNp@cysteamine/PAMAM were comparable (deviation <±10%; limits of detection (LOD) and quantification (LOQ) were 1.7 × 10−4 and 5.8 × 10−4 mg dL−1, respectively) to those concentrations obtained using the uricase-based enzymatic-colorimetric method. It was also observed that the presence of dendrimers in the GCE/AuNp@cysteamine/PAMAM system minimizes ascorbic acid (AA) interference during UA oxidation, thus improving the electrocatalytic activity of the gold nanoparticles.  相似文献   

7.
利用聚酰胺-胺型(PAMAM)树形分子为模板制备出粒径可控的Pd纳米颗粒(Pd DEN),然后通过超声波法制备了SBA-15分子筛负载的Pd/PAMAM复合材料(Pd SDEN)。XRD和TEM测试表明,负载后Pd纳米颗粒的粒径没有变化,且均匀分布在分子筛的孔道中,SBA-15分子筛的结构也没有变化。以对硝基苯酚还原为例,测试了Pd SDEN的催化性能,与Pd DEN相比,其具有更高的催化效率,重复使用5次后仍具有较好的催化活性,反应速率仅下降4%,且Pd/PAMAM复合材料仍能稳定存在于分子筛的孔道中。  相似文献   

8.
低代端酯基PAMAM树形分子存在下银纳米颗粒的制备   总被引:4,自引:0,他引:4  
在低代端酯基PAMAM树形分子(G1.5-COOCH3)存在时,用氢气还原AgNO3制备出银纳米颗粒。用透射电子显微镜(TEM),电子衍射(ED),紫外-可见吸收光谱(UV-Vis)和红外光谱(FT-IR)对所制备的银纳米颗粒进行了表征。实验结果表明,当用氢气作为还原剂时,以低代树形分子为保护剂,通过优化还原条件,可成功制备尺寸稳定、均一的银纳米颗粒,其粒径为2.9±0.5 nm,且所制备的银纳米颗粒的粒径分布较窄。根据树形分子的理论尺寸与制备的银纳米颗粒的粒径关系,可推断出大多数的银纳米颗粒是由多个树形分子所包围而稳定存在。  相似文献   

9.
Two new Fe3O4 microspheres‐supported semi‐homogeneous catalysts, namely Fe3O4‐G4‐polyaminoamido (PAMAM) dendrimers‐Pd(0) and Fe3O4‐polyethylene glycols (PEGs)‐Pd(0) were synthesized and characterized by X‐ray powder diffraction, infrared spectrum, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectroscopy and thermal gravimetric analysis, which can catalyze Suzuki coupling reactions. The performance of catalysts was tested for the reactions of aryl halides with phenyl boronic acid and compared with a heterogeneous catalyst Fe3O4‐(3‐aminopropyl)triethoxysilane (APTS)‐Pd(0), in which Fe3O4‐G4‐PAMAM dendrimers‐Pd(0) shows the best activity among the three catalysts. The order of the catalytic activities is Fe3O4‐G4‐PAMAM dendrimers‐Pd(0)>Fe3O4‐PEGs‐Pd(0)>Fe3O4‐APTS‐Pd(0). The catalysts can be quickly and completely recovered by simply applying a magnet of 105 mT and the efficiencies remain unaltered even after four recycles.  相似文献   

10.
Dendrimers or biofunctionalized dendrimers can be assembled onto magnetic iron oxide nanoparticles to stabilize or functionalize inorganic nanoparticles. Carboxylated poly(amidoamine) PAMAM dendrimers (generation 4.5) have been used for the synthesis of iron oxide nanoparticles, resulting nanocomposites with potential biomedical applications. The present paper aims to systematically investigate the thermal behaviour of nanostructured hybrids based on ferric oxide and PAMAM dendrimers, by differential scanning calorimetry (DSC) technique. The novelty consists both in synthesis procedure of hybrid nanostructures as well as in DSC approach of these nanocomposites. For the first time, we propose a new method to prepare Fe2O3??dendrimer nanocomposite, using soft chemical process at high pressure. Commercial PAMAM dendrimers with carboxylic groups on its surface were used. When high pressure is applied, polymeric structures suffer morphological changes leading to hybrid nanostructures' formation. In the same time, crystallinity of inorganic nanoparticles is provided. DSC results showed an increase in thermal stability of composites as compared to commercial dendrimers. This could be due to the formation of strong interactions between ferric oxide and carboxyl groups, as confirmed by Fourier transform infrared spectroscopy. Electron microscopy analysis (SEM/EDX) and size measurements were performed to demonstrate the existence of nanosized particles.  相似文献   

11.
Spectrophotometric titrations provide information about the interior of the polyamidoamine (PAMAM) dendrimers, and therefore how nanoparticles are encapsulated. In this work, binding studies were performed to determine maximum loading capacities (N) of hydroxyl terminated G4, G5, and G6 PAMAM dendrimers with Cu2+ ions. The values of N found via spectrophotometric titrations were 16.22, 31.86, and 57.36 for G4‐OH, G5‐OH, and G6‐OH, respectively. The determination of loading capacity was also done using Viva spin filtration, and the results were found to be in agreement with those found via spectrophotometric titrations. From the binding isotherm, the values of equilibrium constant (K′) were determined and found to be 0.0488 (G4‐OH), 0.0291 (G5‐OH), and 0.0158 (G6‐OH). Owing to instability of G4‐OH (Cu16), G5‐OH (Cu32), and G6‐OH (Cu57) dendrimer‐encapsulated nanoparticles (DENs) synthesized, G6‐OH (Cu55) DENs of average size 2.6 ± 0.3 nm were prepared and were found to be relatively stable. Thus G6‐OH (Cu55) catalyst was evaluated for the reduction of 4‐nitrophenol and was found to be catalytically active toward reduction of 4‐nitrophenol. Reaction kinetics of 4NP reduction was thoroughly studied in light of the Langmuir‐Hinshelwood kinetic model, and surface rate k, and the adsorption rates K4NP, and KBH4 were determined. The reaction was performed at different temperatures, which further expanded the study into determination of thermodynamic (ΔH, ΔS, ΔG, and EA) parameters.  相似文献   

12.
Direct evidence for the blue luminescence of gold nanoclusters encapsulated inside hydroxyl‐terminated polyamidoamine (PAMAM) dendrimers was provided by spectroscopic studies as well as by theoretical calculations. Steady‐state and time‐resolved spectroscopic studies showed that the luminescence of the gold nanoclusters consisted largely of two electronic transitions. Theoretical calculations indicate that the two transitions are attributed to the different sizes of the gold nanoclusters (Au8 and Au13). The luminescence of the gold nanoclusters was clearly distinguished from that of the dendrimers.  相似文献   

13.
New fluorescent poly(amidoamine) (PAMAM) dendrimers, comprising 4-ethylamino-1,8-naphthalmide units on the periphery have been synthesized. Their photophysical properties in organic solvents of different polarity have been determined. The photodegradation of the dendrimers in organic solvents has been investigated. The effect of the coordination of the dendrimer with transition metal cations in N,N-dimethylformamide solution has been discussed.  相似文献   

14.
Dendrimer-metal (silver, platinum, and palladium) nanocomposites are prepared in aqueous solutions containing poly(amidoamine) (PAMAM) dendrimers with surface amino groups (generations 3, 4, and 5) or poly(propyleneimine) (PPI) dendrimers with surface amino groups (generations 2, 3, and 4). The particle sizes of the metal nanoparticles obtained are almost independent of the generation as well as the concentration of the dendrimer for both the PAMAM and the PPI dendrimers; the average sizes of silver, platinum, and palladium nanoparticles are 5.6-7.5, 1.2-1.6, and 1.6-2.0 nm, respectively. It is suggested that the dendrimer-metal nanocomposites are formed by adsorbing the dendrimers on the metal nanoparticles. Studies of the reduction reaction of 4-nitrophenol by these nanocomposites show that the rate constants are very similar between PAMAM and PPI dendrimer-silver nanocomposites, whereas the rate constants for the PPI dendrimer-platinum and -palladium nanocomposites are greater than those for the corresponding PAMAM dendrimer nanocomposites. In addition, it is found that the rate constants for the reduction of 4-nitrophenol involving all the dendrimer-metal nanocomposites decrease with an increase in the dendrimer concentrations, and the catalytic activity of dendrimer-palladium nanocomposites is highest.  相似文献   

15.
Polyamidoamine (PAMAM) dendrimers of different generations (G2 and G4) conjugated with β-cyclodextrin (β-CD), PAMAM (G2, G4)-CD, were synthesized using substitution reaction from mono-6-iodine-β-cyclodextrin and PAMAM dendrimers. The resulting molecular structures were characterized by NMR, IR. The molecular interaction between various dendrimers and levofloxacin lactate (LFL) were investigated by monitoring the fluorescence of LFL in the presence of dendrimers in buffer solution (pH 7.4) at 25?°C. It was found that the PAMAM (G2, G4)-CD possesses higher sensitizing ability than that of the corresponding parent dendrimers and natural β-CD, and increases concomitantly with the increases of generation and content of β-CD, suggesting that the PAMAM (G2, G4)-CD possesses stronger inclusion ability with LFL. The possible interaction mechanism between PAMAM-CD and LFL was proposed by 1H NMR analysis and theoretical calculation. The results show that the LFL molecule is located at the amine end of dendrimer molecule and along the side of cyclodextrin cavities to form supramolecular complexes. Furthermore, results indicate that the main driving force of the complex could be attributed to the electrostatic interactions and hydrogen bonding between LFL and PAMAM-CD, as well as the synergistic effect of intermolecular forces.  相似文献   

16.
Gold- and gold/silver-dendrimer nanocomposites have been synthesized by UV irradiation of their salts dissolved in ethanol containing dendrimers. As dendrimers, poly(amidomaine) PAMAM dendrimers and poly(propyleneimine) PPI dendrimers of various generations were used. The photoreduction of their salts is greatly accelerated by using benzoin as a photoinitiator. The sizes of gold in the nanocomposites are affected by the concentration of benzoin as well as the concentration of dendrimers, but are hardly changed with the kind of dendrimers. For gold/silver-dendrimer nanocomposites, the absorption spectra of gold/silver nanoparticles in the nanocomposites are very similar to the theoretical spectra of gold/silver alloy nanoparticles, suggesting the formation of gold/silver alloy nanoparticles. From the comparison of TEM and DLS measurements, it is found that the metal-dendrimer nanocomposites consist of metal nanoparticles covering by dendrimer molecules.  相似文献   

17.
A novel type of rhenium-containing dendrimers has been prepared and characterized. A series of Schiff base-terminated PAMAM dendrimers were prepared by condensing the terminal amine groups of PAMAM dendrimers with pyridine-2-carboxaldehyde. Complete condensation of the terminal amines was confirmed by 1H NMR spectroscopy. Bromotricarbonylrhenium(I) moieties were introduced onto the surface of these modified PAMAM derivatives by refluxing with bromopentacarbonylrhenium(I). These complexes had been characterized by a variety of analytical and spectroscopic techniques and their IR, NMR, and mass spectra discussed. The crystal structure of the model compound [(CH3CONHCH2CH2NCHPy)ReBr(CO)3] confirms a facial configuration of the three carbonyl ligands. UV-Vis absorption spectroscopy suggests that the {Re(CO)3} moieties are quite far apart even in the second generation PAMAM dendrimers and do not interact with one another. In fact, the intensity of the metal-to-ligand (dπ-pπ) charge-transfer is a linear function of the number of {Re(CO)3} chromophores.  相似文献   

18.
Dendrimer-Au nanocomposites are prepared in aqueous solutions using poly(amidoammine)dendrimers (PAMAM) (generation 2, 3, and 5) and poly(propyleneimine)dendrimers (PPI)(generation 2, 3, and 4) by wet chemical NaBH(4) method. The Au nanoparticles thus obtained are 2-4 nm in diameter for both dendrimers and no generation dependence on the particle size is observed, whereas the generations of the dendrimers are increased as stabilization of Au-nanoparticles is achieved with lower dendrimer concentrations. Studies of the reduction reaction of 4-nitrophenol using these nanocomposites show that the rate constants for the PAMAM dendrimers (generations 2 and 3) are higher than those for the PPI dendrimers (generations 2 and 3), while a distinct difference in the rate constants is not seen for the PAMAM dendrimer (generation 5) or the PPI dendrimer (generation 4). In addition, the rate constants for the reduction of 4-nitrophenol involving all the dendrimers decrease with increases in dendrimer concentrations.  相似文献   

19.
Adsorption of the thermoresponsive copolymer of poly(N-isopropylacrylamide-co-4-vinylpyridine) (PNIPAM-co-P4VP) onto the core-shell microspheres of poly(styrene-co-methylacrylic acid) (PS-co-PMAA) is studied. The core-shell PS-co-PMAA microspheres are synthesized by one-stage soap-free polymerization in water. The copolymer of PNIPAM-co-P4VP is synthesized by free radical polymerization of N-isopropylacrylamide and 4-vinylpyridine in the mixture of DMF and water using K2S2O8 as initiator. Adsorption of PNIPAM-co-P4VP onto the core-shell PS-co-PMAA microspheres results in formation of the composite microspheres of PS/PMAA-P4VP/PNIPAM. The driven force to adsorb the copolymer of P4VP-co-PNIPAM onto the core-shell PS-co-PMAA microspheres is ascribed to hydrogen-bonding and electrostatic affinity between the P4VP and PMAA segments. The resultant composite microspheres of PS/PMAA-P4VP/PNIPAM with surface chains of PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 33 °C.  相似文献   

20.
Aqueous solution diffusion coefficients for G0–G3 PAMAM dendrimers were determined from DOSY-NMR spectroscopy at high and neutral pH. The study was performed in a dilute regime and diffusion coefficients at infinite dilution (D 0) were estimated from the variation of diffusion coefficients with dendrimer concentration. Hydrodynamic radii (R h) for each dendrimer were estimated from D 0 using the Stoke–Einstein relationship at both pH. According to D 0 and R h values, the structure of G0–G1 PAMAM dendrimers is almost insensitive to pH variations, whereas G2–G3 PAMAM dendrimers undergo swelling at neutral pH, due to surface amino groups protonation. Experimental diffusion coefficients show a scaling trend with the number of dendrimer atoms (N), with scaling laws of the type D0 μ Na D_{0} \propto N^{\alpha } , where α takes values of −0.39 and −0.50 at pH 12 and 7, respectively. For the first time, experimental data accounts for the scaling behavior of aqueous diffusion coefficients for low generation PAMAM dendrimers, as previously reported from molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号