首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing four monopole channels and four loop channels was developed for human head magnetic resonance (MR) imaging at 7 T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has the higher signal-to-noise ratio (SNR) and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields.  相似文献   

2.
Copper foil has been widely employed in conventional radio frequency (RF) birdcage coils for magnetic resonance imaging (MRI). However, for ultrahigh-field (UHF) MRI, current density distribution on the copper foil is concentrated on the surface and the edge due to proximity effect. This increases the effective resistance and distorts the circumferential sinusoidal current distribution on the birdcage coils, resulting in low signal-to-noise ratio (SNR) and inhomogeneous distribution of RF magnetic (B1) field. In this context, multiple parallel round wires were proposed as legs of a birdcage coil to optimize current density distribution and to improve the SNR and the B1 field homogeneity. The design was compared with three conventional birdcage coils with different width flat strip surface legs for a 9.4 T (T) MRI system, e.g., narrow-leg birdcage coil (NL), medium-leg birdcage coil (ML), broad-leg birdcage coil (BL) and the multiple parallel round wire-leg birdcage coil (WL). Studies were carried out in in vitro saline phantom as well as in vivo mouse brain. WL showed higher coil quality factor Q and more homogeneous B1 field distribution compared to the other three conventional birdcage coils. Furthermore, WL showed 12, 10 and 13% SNR increase, respectively, compared to NL, ML and BL. It was proposed that conductor’s shape optimization could be an effective approach to improve RF coil performance for UHF MRI.  相似文献   

3.
本文通过对鸟笼线圈原理和阵列线圈去耦原理的分析,提出了一种适用于自主研发的多核并行磁共振成像(MRI)系统的双核并行成像线圈设计方案,并在电感去耦的基础上提出LC并联trap去耦法,提高了去耦方法的可适性.依据设计方案制作了1H/31P双核并行成像线圈,并将其应用于4.7 T磁体系统,利用自主研发的多核并行MRI系统进行了并行成像实验测试,成功获得了1H和31P的并行磁共振图像,验证了设计方案的可行性.  相似文献   

4.
A birdcage coil capable of operating simultaneously and independently in three orthogonal dimensions has been developed. A co-rotational end-ring mode producing an RF field in the longitudinal direction was utilized in addition to the two common transverse orthogonal modes. Two conductor turns were used for each of the coil's windows, increasing its inductance by a factor of four, thereby, making the coil suitable for low-frequency applications. Two or three-frequency detection can be easily carried out with this device. Orthogonality of the coil's channels allows arbitrarily close frequency positioning of each resonant mode, potentially useful in wide-line NQR studies, in which simultaneous excitation/detection of signals from three adjacent regions of a single wide line can be performed. The coil's performance was evaluated using a three-dimensional scheme, in which a circularly polarized experiment was combined with a linearly polarized measurement at another frequency, resulting in SNR improvement by 55%.  相似文献   

5.
The radio-frequency 'birdcage resonator' has found wide use in MRI/MRS for its field homogeneity and signal-noise characteristics. This paper presents a general analysis, derived from lumped element transmission line theory, of the electrical behavior of unloaded, N-column birdcage resonators applicable to several versions of the basic design including low-pass and high-pass coils. Analytic expressions and computer results are presented for both types of coil describing resonant frequencies, input and characteristic impedances, dispersion relations, pass-bands, resonant peak bandwidth and Q. Theoretical expressions for normalized resonant frequency difference ratios independent of element values and resonator geometry have been developed for generic low- and high-pass coils. Experimental measurements of resonant frequencies were made for six coils, and the average agreement with theoretical predictions was approximately 4%.  相似文献   

6.
The purpose of this study was to analyse the relationship between the radio frequency (RF) coil performance and conductor surface shape for ultra-high field (UHF) magnetic resonance imaging. Twelve different leg-shaped quadrature birdcage coils were modeled and built, e.g., 4 mm-width-leg conventional birdcage coil, 7 mm-width-leg conventional birdcage, 10 mm-width-leg conventional birdcage coil, 13 mm-width-leg conventional birdcage coil, inside arc-shape-leg birdcage coil, outward arc-shape-leg birdcage coil, inside right angle-shape-leg birdcage coil, outward right angle-shape-leg birdcage coil, vertical 4 mm-width-leg vertical birdcage, 6 mm-width-leg vertical birdcage, 8 mm-width-leg vertical birdcage and 10 mm-width-leg vertical birdcage. Studies were carried out in both electromagnetic simulations with finite element method as well as in vitro saline phantom experiments at 9.4 T. Both the results of simulation and experiment showed that conventional birdcage coil produces the highest signal-to-noise ratio (SNR) while the vertical birdcage coil produces the most homogeneous RF magnetic (B 1) field at UHF. For conventional birdcage coils, as well as the vertical birdcage coils, only the proper width of legs results in the best performance (e.g., B 1 homogeneous and SNR). For vertical birdcage coils, the wider the leg size, the higher RF magnetic (B 1) field intensity distribution.  相似文献   

7.
An inductively coupled surface coil for imaging the rat spine at 7 T is described. This planar circular probe was made from microwave substrate to limit the size of the coil and to minimize the magnetic susceptibility. The surface coil was used as a single transmit/receive coil and as a receive-only coil with a birdcage body coil for excitation. The signal-to-noise ratio (SNR) of the probe was compared to a 5-cm birdcage coil and exceeded the birdcage coil's SNR by three to six times at superficial structures. The main advantages of the probe are an improved SNR for superficial structures and a simple design and use. Images with 50 × 50 × 500 μm voxels were obtained of the rat spine with excellent anatomical detail.  相似文献   

8.
A novel radiofrequency coil design which is especially useful for NMR imaging of sodium in small samples is described. The structure is neither a saddle nor a birdcage coil type, but rather consists of a series of tuned loops. In principle, the loops are not electrically connected to each other and the main interaction between them is by electromagnetic induction. The coil has approximate circular symmetry and uses much smaller capacitors than does the birdcage design. It is shown theoretically how a rotating held can be created by detuning two modes of the coil, and that the resulting impedance-frequency relationship differs substantially from that usually found in resonant circuits. It is shown that it is possible to use the coil simultaneously as both a transmitter and a receiver with no external phase-shifting networks, by using independent inductively coupled feed loops for transmitting and receiving. The behavior of the coil was studied in some detail using computer simulation, and a working model has been constructed and used for in vivo imaging of endogenous sodium in rats at 1.9 T. The theoretical analysis and experimental results indicate very high spatial homogeneity of the field and improved signal-to-noise ratio.  相似文献   

9.
The theoretically known degeneracy condition of the band-pass birdcage coil has rarely been exploited in transmit coil designs. We have created an eight-channel degenerate birdcage for the human limbs at 7 T, with dedicated Tx/Rx switches and a Butler matrix. The coil can be split into two half cylinders, as required for its application to patients with limited mobility. The design of the coil, the Butler matrix, and Tx/Rx switches relied on a combination of analytical, circuital, and numerical simulations. The birdcage theory was extended to the degenerate case. The theoretical and practical aspects of the design and construction of the coil are presented. The performance of the coil was demonstrated by simulations, workbench, and scanner measurements. The fully assembled prototype presents good performance in terms of efficiency, B1 homogeneity, and signal-to-noise ratio, despite the asymmetry introduced by the splittable design. The first in vivo images of the knee are also shown. A novel RF coil design consisting of an eight-channel splittable degenerate birdcage has been developed, and it is now available for 7 T MRI applications of the human lower limbs, including high-resolution imaging of the knee cartilages and of the patellar trabecular structure.  相似文献   

10.
Signal-to-noise ratio (SNR) is a critical factor in MR-guided high-intensity focused ultrasound (HIFU) for local heating, which can affect the accuracy of temperature measurement. In order to achieve high SNR and higher temporal resolution, dedicated coil arrays for MR-guided HIFU applications need to be developed. In this work, a flexible 9-channel coil array was designed, and constructed at 3 T to achieve fast temperature mapping for MR-guided HIFU applications on rabbit leg muscle. Coil performance was evaluated for SNR, and parallel imaging capability by in-vivo studies. Compared to a commercially available 4-channel flexible coil array, the dedicated 9-channel coil array has a much higher SNR, with at least a 2.6-fold increment in the region of interest (ROI). The inverse g-factors maps demonstrated that the dedicated 9-channel coil array has a better parallel imaging capability than the Flex Small 4. With accelerations normal to the array direction, both coil arrays showed much higher g-factors than those of accelerations along the array direction. Room temperature mapping was implemented to evaluate the temperature measurement accuracy by in-vivo experiments. The precisions of the 9-channel coil, ±0.18 °C for un-acceleration and ± 0.56 °C for acceleration at R = 2 × 2, both improved by an order of magnitude than these of the 4-channel coil, which were ± 1.45 °C for un-acceleration and ± 3.52 °C for acceleration at R = 2 × 2. In the fast temperature imaging on the rabbit leg muscle with heating, a high temporal resolution of 3.3 s with a temperature measurement precision of ±0.56 °C has been achieved using the dedicated 9-channel coil. This study demonstrates that the dedicated 9-channel coil array for rabbit leg imaging provides improved performance in SNR, parallel imaging capability, and the accuracy of temperature measurement compared to a commercial 4-channel coil, and it also achieves fast temperature mapping in practical MR-guided HIFU applications.  相似文献   

11.
Magnetic resonance imaging (MRI) technique is widely used to capture the images of the liquid items inside the human body. The radio-frequency (RF) coil is one of the important modules present inside an MRI system, which plays a major role in image quality. In this work, a microstrip-based high-pass RF birdcage coil is proposed for 1.5 T MRI. The cylindrical-shaped birdcage coil consists of 12 microstrip radiating elements and tuning capacitors to achieve a resonance at 63.85 MHz. The coil is made up of 10 mm polytetrafluoroethylene substrate coated by a conducting transmission line of desired length and width. A finite difference time domain simulation is carried out to analyze the return loss (S11), magnetic field homogeneity and Specific Absorption Rate (SAR) parameters of the RF coil. The SAR values of the proposed microstrip-based 1.5 T birdcage coil was compared with 3 T RF birdcage coil. The simulation results indicate the proposed birdcage coil structure gives optimal values of S11, magnetic field homogeneity and SAR.  相似文献   

12.
A novel intrinsically decoupled transmit and receive radio-frequency coil element is presented for applications in parallel imaging and parallel excitation techniques in high-field magnetic resonance imaging. Decoupling is achieved by a twofold strategy: during transmission elements are driven by current sources, while during signal reception resonant elements are switched to a high input impedance preamplifier. To avoid B(0) distortions by magnetic impurities or DC currents a resonant transmission line is used to relocate electronic components from the vicinity of the imaged object. The performance of a four-element array for 3 T magnetic resonance tomograph is analyzed by means of simulation, measurements of electromagnetic fields and bench experiments. The feasibility of parallel acquisition and parallel excitation is demonstrated and compared to that of a conventional power source-driven array of equivalent geometry. Due to their intrinsic decoupling the current-controlled elements are ideal basic building blocks for multi-element transmit and receive arrays of flexible geometry.  相似文献   

13.
Non-human primates (NHPs) are vital models for neuroscience research. These animals have been widely used in behavioral, electrophysiological, molecular, and more recently, multimodal neuroimaging and neuro-engineering studies. Several RF coil arrays have been designed for functional, high-resolution brain magnetic resonance imaging (MRI), but few have been designed to accommodate multimodal devices. In the present study, a 16-channel array coil was constructed for brain imaging of macaques at 3 Tesla (3 T). To construct this coil, a close-fitting helmet-shaped form was designed to host 16 coil loops for whole-brain coverage. This assembly is mountable onto stereotaxic head frame bars, and the coil functions while the monkey is in the sphinx position with a clear line of vision of stimuli presented from outside of the MRI system. In addition, 4 openings were allocated in the coil housing, allowing multimodal devices to directly access visual cortical regions such as V1-V4 and MT. Coil performance was evaluated in an anesthetized macaque by quantifying and comparing signal-to-noise ratios (SNRs), noise correlations, and g-factor maps to a vendor-supplied human pediatric coil frequently used for NHP MRI. The result from in vivo experiments showed that the NHP coil was well-decoupled, had higher SNRs in cortical regions, and improved data acquisition acceleration capability compared with a vendor-supplied human pediatric coil that has been frequently used in macaque MRI studies. Furthermore, whole-brain anatomic imaging, diffusion tensor imaging and functional brain imaging have also been conducted: the details of brain anatomical structure, such as cerebellum and brainstem, can be clearly visualized in T2-SPACE images; b0 SNR calculated from b0 maps was higher than the human pediatric coil in all regions of interest (ROIs); the time-course SNR (tSNR) map calculated for GRE-EPI images demonstrates that the presented coil can be used for high-resolution functional imaging at 3 T.  相似文献   

14.
Sodium magnetic resonance (MR) imaging is a promising technique for detecting changes of proteoglycan (PG) content in cartilage associated with knee osteoarthritis. Despite its potential clinical benefit, sodium MR imaging in vivo is challenging because of intrinsically low sodium concentration and low MR signal sensitivity. Some of the challenges in sodium MR imaging may be eliminated by the use of a high-sensitivity radiofrequency (RF) coil, specifically, a dual-tuned (DT) proton/sodium RF coil which facilitates the co-registration of sodium and proton MR images and the evaluation of both physiochemical and structural properties of knee cartilage. Nevertheless, implementation of a DT proton/sodium RF coil is technically difficult because of the coupling effect between the coil elements (particularly at high field) and the required compact design with improved coil sensitivity. In this study, we applied a multitransceiver RF coil design to develop a DT proton/sodium coil for knee cartilage imaging at 3 T. With the new design, the size of the coil was minimized, and a high signal-to-noise ratio (SNR) was achieved. DT coil exhibited high levels of reflection S11 (~-21 dB) and transmission coefficient S12 (~-19 dB) for both the proton and sodium coils. High SNR (range 27-38) and contrast-to-noise ratio (CNR) (range 15-21) were achieved in sodium MR imaging of knee cartilage in vivo at 3-mm(3) isotropic resolution. This DT coil performance was comparable to that measured using a sodium-only birdcage coil (SNR of 28 and CNR of 20). Clinical evaluation of the DT coil on four normal subjects demonstrated a consistent acquisition of high-resolution proton images and measurement of relative sodium concentrations of knee cartilages without repositioning of the subjects during the same MR scanning session.  相似文献   

15.
A formulation has been developed for the determination of self and mutual inductances in unloaded, eight-column symmetric birdcage coils using their expected resonant mode current patterns and well-known inductance formulas. The average frequency differences between theory and experiment for mode one resonances for nine low-pass coils were 0.66 (+/- 0.57) MHz and 2.14 (+/- 2.08) MHz using effective (self plus mutual) and self inductances, respectively, and similarly, for three high-pass coils, 1.19 (+/- 0.56) MHz and 2.79 (+/- 2.20) MHz. These frequency differences were more pronounced for the higher modes; for mode four, the differences neglecting mutual inductance were 14.30 (+/- 11.10) MHz and 10.42 (+/- 4.60) MHz for the low- and high-pass coils, respectively. This analysis provides the first explicit evaluation of the total end-ring and column inductances L1 and L2 within each birdcage section at resonance with resulting excellent agreement in resonant frequencies between theory and experiment.  相似文献   

16.
Split RF coils offer improved patient access by eliminating the need for the coil to be slid over the region of interest. For unshielded birdcage coils, the presence of end ring currents necessitates a direct electrical connection between two halves of the coil. For high-field (>3T) shielded birdcage coils, both the shield and the coil must be split and reliably connected electrically. This problem can be circumvented by the use of split TEM volume coils. Since the elements of a TEM coil are coupled inductively, no direct electrical connection between the halves is necessary. In this work we demonstrate that the effects of splitting the shield for head and knee TEMs can be compensated for, and performance retained. For the knee, the improved access allowed the coil diameter to be reduced, enhancing the sensitivity by 15-20%.  相似文献   

17.
A quadrature transmit/receive birdcage coil was optimized for squirrel monkey functional imaging at the high field of 9.4 T. The coil length was chosen to gain maximum coil efficiency/signal-to-noise ratio (SNR) and meanwhile provide enough homogenous RF field in the whole brain area. Based on the numerical simulation results, a 16-rung high-pass birdcage coil with the optimal length of 9 cm was constructed and evaluated on phantom and in vivo experiments. Compared to a general-purpose non-optimized coil, it exhibits approximately 25% in vivo SNR improvement. In addition to the volume coil, details about how to design and construct the associated animal preparation system were provided.  相似文献   

18.
Proper design of a birdcage coil plays a very important role in obtaining high-resolution small animal magnetic resonance imaging. The RF field homogeneity and the coil filling factor directly affect the signal-to-noise ratio (S/N) and therefore limit the resolution. It has been shown that a conductive end-cap placed on one side of the coil can improve the RF field inhomogeneity near this area. This also contributes to an increase in the S/N by reducing the length of the RF coil. While this is true near the end-cap, the distal half of the coil still suffers from poor homogeneity and S/N. Consequently, such a shortfall may hinder small animal whole body imaging. In order to improve the coil performance for a larger imaging volume, we designed a new small animal birdcage RF coil by adding a detachable second end-cap to the open end. The performance of single end and double end RF coils was compared experimentally. The results indicate that the double end-cap can provide superior uniformity along the long axis of the coil. Furthermore, if one wishes to obtain the same homogeneity within a given volume, a double end-cap would have less than half of the length of the single end-cap coil leading to a superior S/N performance.  相似文献   

19.
The four-ring birdcage resonator, a new class of dual-tuned birdeage resonators, is described. We report two configurations of the coil: the low-pass, high-pass (LP-HP) and the low-pass, low-pass (LP-LP), both of which can be operated in dual quadrature mode at 1.5 T. As head coils, both configurations exhibit greatly reduced tuning interactions between frequencies, permitting rapid, noniterative tuning. Compared with single-tuned, two-ring birdcage resonators of similar volume, the sensitivity and transmitter efficiencies of the resonators are better than 85% for the proton frequency and the same to within 5% for the phosphorus frequency. Circuit models have been developed to refine coil tuning and aid the calculation of B1 field contour plots. Both configurations have been used for integrated examinations involving acquisition of high-quality 1H images and 1H-decoupled 31P CSI spectra of the human head. A scaled-down version of the LP-LP configuration has been demonstrated for use with the human calf.  相似文献   

20.
An optimized birdcage resonator configuration with a low-pass filter was designed and built to facilitate the acquisition of high-resolution three-dimensional images of small animals on the 3 T nuclear magnetic resonance imaging system. The birdcage resonator had a 12-element structure in order to ensure B 1 homogeneity over the image volume and for obtaining the maximum filling factor. The quality of the manufactured birdcage resonators was evaluated on the basis of the return loss following the matching and tuning process. The experimental magnetic resonance images of the phantoms were obtained by the various manufactured birdcage resonators to compare the signal-to-noise ratio (SNR) in accordance with the size of the objects. The ratio of the size of an object to the size of the coil was identified by the parameters that were estimated from the images of a phantom. This study demonstrated that the SNR could be different depending on the size of the object even if birdcage resonators have the same cylindrical forms. Authors' address: Bo-Young Choe, Department of Biomedical Engineering, Kangnam St. Mary's Hospital, College of Medicine, Catholic University of Korea, 505 Banpo-Dong, Seocho-Gu, Seoul 137-040, Korea  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号