首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV–Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA)2(Sac)2(H2O)], where NA — nicotinamide, Sac — saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA)2(H2O)4](Sac)2).  相似文献   

2.
Copper(II) complex with -piperidine-3-carboxylic acid ( -Hpipe-3):[Cu( -pipe-3)2(H2O)] and cobalt(II) and nickel(II) complexes with piperidine-4-carboxylic acid (Hpipe-4):[M(Hpipe-4)2(H2O)4]Cl2 (M: Co, Ni) have been prepared and characterized by means of IR and powder diffuse reflection spectra, thermal analysis, and magnetic susceptibility. The crystal structures of these complexes have been determined by X-ray diffraction. The crystal of [Cu( -pipe-3)2(H2O)] is orthorhombic with the space group Pbcn. The copper atom is in a square pyramidal geometry, ligated by two carboxylato oxygen atoms, two nitrogen atoms, and a water molecule. One molecule of this complex consists of either -piperidine-3-carboxylic acid or -piperidine-3-carboxylic acid. The crystals of [M(Hpipe-4)2(H2O)4]Cl2 are monoclinic with space group P21/n. In these complexes the metal atom is in an octahedral geometry ligated by two carboxylato oxygen atoms and four water molecules.  相似文献   

3.
The structures of two glycinohydroxamoto (GHA) complexes of Ni(II) and Co(III) have been determined by single-crystal X-ray diffraction methods. The crystals of Ni(GHA)2 are monoclinic with a = 5.360(1), b = 7.315(4), c = 10.194(4) Å, β = 96.57(3), Z = 2, and space group P21/c. The crystals of Co(GHA)3•1/2 H2O are monoclinic with a = 22.467(19), b = 8.041(4), c = 13.700(11) Å, β = 116.01(7), Z = 8, and space group C2/c. The values of the final residuals R for Ni(GHA)2 and Co(GHA)3•1/2 H2O are 0.0275 and 0.032, respectvely. The molecular structures of Ni(GHA)2 and Co(GHA)3 consist of a square planar and an octahedral coordination, respectively, with the glycinohydroxamato (NH2CH2CONOH) ligands coordinating to the metal ion via the N (amino) and the N (NOH). These two complexes are the first well-established cases of coordination of the NHO group of a hydroxamic acid to a transition metal via the nitrogen atom.  相似文献   

4.
Infrared spectra (4000–200 cm−1) are reported for metal halide(II) benzimidazole complexes of the following stoichiometries: M(benz)X2 [M=Cd, Cu; X=Cl, Br; BENZ=benzimidazole], Co(benz)2, and Co(benz)2X2 [X=Cl, Br, I]. Vibrational assignments are given for all the observed bands. The analysis of the vibrational spectra indicates that there are some structure–spectra correlations. For a given series of isomorphous complexes the sum of the difference between the values of the vibrational modes of uncoordinated benzimidazole and coordinated to metal ion benzimidazole was found to increase in the order of the second ionization potentials of metals.  相似文献   

5.
P.P. Singh  D.S. Gupta 《Polyhedron》1986,5(12):1941-1945
[Fe(C5H4HgSCN)2M(NCS)2] complexes were prepared by reacting ferrocenylene bis[mercury(II)thiocyanate] with M(NCS)2 [M = Co(II), Ni(II), Cu(II) or Zn(II)]. Their adducts of general formula [Fe(C5H4HgSCN)2M(NCS)2L] were prepared by reacting ferrocenylene bis[mercury(II)thiocyanate] and M(NCS)2L2 (L = morph or en). All compounds were characterized by elemental analyses, and molar-conductance, IR and electronic spectral studies. These studies indicated that the geometry around the metal is tetrahedral for cobalt and zinc, and octahedral for nickel and copper. Both types of complex have a thiocyanate-bridged structure.  相似文献   

6.
《Polyhedron》2001,20(28):306-3306
Five new complexes of composition [Cu(dpt)Ni(CN)4] (1) (dpt=dipropylenetriamine), [Cu(dien)Ni(CN)4]·2H2O (2) (dien=diethylenetriamine), [Cu(N,N′-dimeen)Ni(CN)4]·H2O (3) (N,N′-dimeen=N,N′-dimethylethylenediamine), [Cu(N,N-dimeen)Ni(CN)4]·H2O (4) (N,N-dimeen=N,N-dimethylethylenediamine) and [Cu(trimeen)Ni(CN)4] (5) (trimeen=N,N,N′-trimethylethylenediamine) have been obtained by the reactions of the mixture of Cu(ClO4)2·6H2O, appropriate amine and K2[Ni(CN)4] in water and have been characterized by IR and UV–Vis spectroscopies and magnetic measurements. The crystal structure of [Cu(dpt)Ni(CN)4] (1) has been determined by single-crystal X-ray analysis. The structure of 1 consists of a one-dimensional polymeric chain ---Cu(dpt)---NC---Ni(CN)2---CN---Cu(dpt)--- in which the Cu(II) and Ni(II) atoms are linked by CN groups. The nickel atom is four coordinate with four cyanide-carbon atoms (two cyano groups are terminal and two cyano groups (in cis fashion) are bridged) in a square-planar arrangement and the copper atom is five coordinate with two cyanide-nitrogen and three dpt-nitrogen atoms, in a distorted square-pyramidal arrangement. The temperature dependence of magnetic susceptibility (2–300 K) was measured for compound 1. The magnetic investigation showed the presence of a very weak antiferromagnetic interaction (J=−0.16 cm−1) between the copper atoms within each chain through the diamagnetic Ni(CN)4 2− ions.  相似文献   

7.
The preparation and characterization by X-ray crystallography of transition metal sulfur dioxide hexafluoroarsenates of the general formula [M(SO2)x](AsF6)2 1 (1a: M=Mn, x=2; 1c: M=Co, x=4; 1e: M=Cu, x=4) and the hexafluoroantimonate [Co(SO2)2](SbF6)2 3 is reported. The structural features of the compounds mentioned are compared with those of [Fe(SO2)4](AsF6)2 (1b) and [Ni(SO2)6](AsF6)2 (1d), reported previously. The structural diversity of transition metal sulfur dioxide complexes is discussed.  相似文献   

8.
Transition metal coordination compounds with the novel N2S2-donor ligand 1,6-bis(4(5)-imidazolyl)-2,5-dithiahexane (abbreviated bhdhx) with general formulae M(bhdhx)(NO3)2(M = Co, Ni, Cu) and M(bhdhx)(H2O)2(BF4)2 (M = Cu, Zn) have been isolated. In all compounds the ligand is tetradentate with both thioether sulphurs and imidazole nitrogens coordinating. In all compounds the metal ions are six-coordinated in a distorted octahedral geometry with either nitrates or water molecules as the fifth and sixth ligands. This is confirmed by the ligand field spectra, which agree with a distorted octahedral coordination. The distortion from octahedral, indicated by the ligand field spectrum of the cobalt nitrate compound is such that the S atoms of the ligands must be at a very large distance from the metal ion. A single crystal of Cu(bhdhx)(NO3)2 was used in a structure determination: orthorhombic space group Pbcn, a = 14.351(5), b = 8.554(3), c = 13.057(4) Å, Z = 4, and T = 293 K. The structure was solved by heavy atom techniques and refined by least-squares methods to a residual R value of 0.033 for 847 significant reflections. The copper ion is at a special position on a two-fold axis, which causes a two-fold symmetry in the ligand. The coordination geometry of the copper atom is distorted octahedral with the two nitrates and the two thioether sulphurs in a cis position, and the imidazole nitrogens trans. The copper to nitrogen distances are 1.933(4) Å, the copper to sulphur distances are 2.495(1) Å, and the copper to oxygen distances are 2.280(3) Å.  相似文献   

9.
M/(MgO)y(CeO2)1-y(M=Ni、Co、Cu)催化剂的催化甲烷燃烧性能   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了M/(MgO)y(CeO2)1-y(M=Ni、Co、Cu)催化剂. 研究了催化剂Ni/(MgO)y(CeO2)1-y催化活性与Ce含量的关系, 当y=0.9时, 催化剂的活性和稳定性最好. 对比研究了(MgO)0.9(CeO2)0.1为载体, 负载Ni、Co、Cu活性组分的催化剂催化甲烷燃烧性能. 结果表明, 负载Cu的催化剂活性最好, 但二次评价后催化剂已烧结;负载Ni的催化剂活性与负载Cu的催化剂相差不大, 且稳定性最好, 经1000 ℃焙烧的Ni/(MgO)0.9(CeO2)0.1催化剂比表面仍有14.32 m2•g-1, 具有较高的催化活性和很好的热稳定性;负载Co的催化剂活性不如前两者, 稳定性居中, 但比表面降低得最少, 抗烧结能力强.  相似文献   

10.
A potentially decadentate ligand, 1,1,4,7,10,10-hexakis(3,5-dimethyl-1-pyrazolylmethyl)-1,4,7,10-tetraazadecane (tthd), has been synthesized from the reaction of tri-ethylenetetramine with six equivalents of N-hydroxymethyl-3,5-dimethylpyrazole. The tthd ligand forms coordination compounds, M2(tthd)(ClO4)4(H2O)x, when M is Co, Ni, Cu, Zn and Cd and x = 4–8; and M2(tthd)(A)2(ClO4)2(H2O)x when M is Co and Ni, A is NCS or Cl, and x = 4–8. The cobalt compound, Co2(tthd)(ClO4)2(H2O)2(MeOH)1.75, crystallizes in the triclinic space group P1, a = 1.959(2), b = 1.5657(3), c = 2.1244(3) nm, = 105.5(1), β = 96.9(1), γ = 112.1(1). Due to severe disorder of the anions the structure could only be refined to an Rw, value of 0.099. The ligand acts as a decadentate, dinucleating ligand. The cobalt ions are distorted octahedrally surrounded by five N-atoms of the tthd ligand and an O-atom of water occupying the sixth coordination place. The other perchlorate compounds have very similar structures, as can be concluded from spectroscopic data.

In the thiocyanate and chloride compounds the anions have replaced the coordinated water molecules, resulting in octahedral Ni compounds. With Co thiocyanate, however, tthd acts as an octadentate ligand, resulting only in five-coordinated compounds.  相似文献   


11.
Six mononuclear complexes [M(L1)2(H2O)4] (M = Co(II), 1a and M = Mn(II), 1b), [Cu(L1)2(H2O)2] (1c), [Cu(L1)2(H2O)(Py)2] (1d), [Cu(L3)(H2O)Cl] · H2O (3a) and [Co(Sal)(H2O)(Py)3] · 2ClO4 · H2O (3b) of phenoxyacetic acid derivatives and Schiff base were determined by single crystal X-ray diffraction. The Co(II) (1a) and Mn(II) (1b) complexes are isomorphous. X-ray crystal structural analyses reveal that these coordination complexes form polymeric structure via formation of different types of hydrogen bonding and π-stacking interactions in solid. Thermal analysis along with the powder X-ray diffraction data of these complexes shows the importance of the coordinated and/or crystal water molecules in stabilizing the MOF structure. Complexes 1a, 1c, 3a show marginal catalytic activity in the oxidation of olefins to epoxides in the presence of i-butyraldehyde and molecular oxygen.  相似文献   

12.
Several complexes of 2-(indazol-1-yl)-2-thiazoline (TnInA) with the divalent ions Co and Zn have been synthesized by the direct combination of the ligand and the metal chloride or nitrate hydrated salts in ethanol. These complexes have been characterized by a variety of physical–chemical techniques. Moreover, the structures of [CoCl2(TnInA)2] · C2H6O (1) and [(M)(TnInA)2(H2O)2](NO3)2 (M = Co, 3; Zn, 4) were determined by single-crystal X-ray diffraction. In all the complexes, the ligand TnInA bonds to the metal ion through the indazole and thiazoline nitrogen atoms. In complex 1 the environment around the cobalt ion may be described as a distorted octahedron with two TnInA ligands and two chlorine ligands. Compounds 3 and 4 are isostructural with a distorted octahedral geometry around the metal center, being linked to two water molecules and two TnInA ligands. However, in complex [ZnCl2(TnInA)] (2) the zinc atom is four-coordinated with a probable tetrahedral environment with two chloro ligands and one TnInA ligand bonded to the metal ion.  相似文献   

13.
Kumar M  Rathore DP  Singh AK 《Talanta》2000,51(6):1187-1196
A stable chelating resin matrix was synthesized by covalently linking o-aminophenol (o-AP) with the benzene ring of the polystyrene–divinylbenzene resin, Amberlite XAD-2, through a –N=N– group. Elemental analyses, thermogravimetric analysis (TGA) and infrared spectra have characterized the resulting chelating resin. It has been used to preconcentrate Cu2+, Cd2+, Co2+, Ni2+, Zn2+ and Pb2+, prior to their determination by flame atomic absorption spectrometry. The optimum pH values for quantitative sorption of Cu, Cd, Co, Ni, Zn and Pb are 6.2–7.4, 5.6–7.2, 5.6–9.0, 6.0–9.0, 5.7–7.0 and 5.0–6.0, respectively. These metals are desorbed (recovery 91–98%) with 4 mol dm−3 HNO3. The sorption capacity of the resin is 3.37, 3.42, 3.29, 3.24, 2.94 and 3.32 mg of metal g−1 of resin, respectively, for Cu, Cd, Co, Ni, Zn and Pb. The effect of NaF, NaCl, NaNO3, Na2SO4, and Na3PO4 on the sorption of these metal ions has been investigated. These electrolytes are tolerable up to 0.01 mol dm−3 in case of all the metal ions, except Cl which is tolerable even up to 0.1 mol dm−3 for Zn and 1.0 mol dm−3 for Pb. The preconcentration factor for Cu, Cd, Co, Ni, Zn and Pb are 50, 50, 100, 65, 40 and 40 (concentration level 10–25 μg dm−3) respectively. Simultaneous enrichment of the six metals is possible. The method has been applied to determine Cu, Cd, Co, Ni, Zn and Pb content in well water samples (RSD≤8%).  相似文献   

14.
Density functional theory has been used to study the trans-influence of Rh–Rh and Rh–L bonds in dirhodium(II) tetracarboxylates with axial ligands L=H2O, pyridine, CO, triphenylphosphine, NO and NO2. The absence of the chemical bond between metal atoms in Rh2(μ-O2CR)4(NO)2 complexes and the formation of two covalent Rh–NO bonds explain the very long Rh–Rh and very short Rh–N distances in these compounds.  相似文献   

15.
Substances of the types MH4ntmp, Mg3[M(Hntmp)]2, M2H2ntmp and Mg[M2(Hntmp)]2, where M = Co, Ni, Cu, Zn and H6ntmp = N[CH2PO(OH)2]3 were prepared. The sodium and cesium salts of the [Co(Hntmp)]3− complexes were also prepared. The IR and electronic spectra and the experimental magnetic susceptibilities indicate that these are high-spin complexes. The coordination surroundings of the central atom consist of a highly distorted octahedron of the ligand oxygen atoms. The nitrogen atom is not coordinated to the central atom.  相似文献   

16.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

17.
The reaction of norbornene (NBE) and norbornadiene (NBD) in the presence of seven-coordinate tungsten(II) and molybdenum(II) complexes of the [(CO)4M(μ-Cl)3M(SnCl3)(CO)3] and [MCl(M′Cl3)(CO)3(NCMe)2] (M=W, Mo; M′=Sn, Ge) types leads to ring-opening metathesis polymerization (ROMP) and to the formation of high molecular weight polymers. The geometric structure of these polymers was determined by means of 1H- and 13C-NMR spectroscopy. The monitoring of the reaction between cyclic olefins and the metal complex by means of 1H-NMR spectroscopy allowed us to observe the coordination of NBD to metal atoms in the initiation step of the polymerization process. Compounds of the [MCl(SnCl3)(CO)34-NBD)] type prepared directly from [(CO)4M(μ-Cl)3M(SnCl3)(CO)3] or [MCl(M′Cl3)(CO)3(NCMe)2] (M=W, Mo) in the presence of an excess of NBD initiate the ROMP reaction immediately. The detection of the first-formed products in the reaction between the metal complex and cyclic olefins provides valuable information concerning the nature of the initiating species.  相似文献   

18.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

19.
The 17O and 14N paramagnetic relaxation rates and chemical shifts of glycine as well as of water, in aqueous solutions of Co(II), Cu(II), and Mn(II) were measured as a function of pH, temperature and metal ion concentration; the relaxation results were fitted to a theoretical equation linking the Swift-Connick equation to the stability constants of all major complexes in equilibrium. As a result, the stability constants of all major complexes were determined, and from the temperature-dependent measurements the thermodynamic parameters for some of these complexes were also calculated. In addition to the bidentate complexes ML+, ML2 and ML3, monodentate complexes of the type MHL2+ and M(HL)22+, mixed complexes of the type MHL2+ and MHL3 were also considered. In the case of the Cu(II)-glycine system at pH> 12 two additional species were considered, namely ML2(OH) and ML2(OH)22−, suggested by the drastic reduction of the paramagnetic broadening in that pH range.  相似文献   

20.
Four novel tetranuclear macrocyclic complexes of the formula [(CuLi)3Fe](ClO4)3·3H2O (i=1–4, Li are the dianions of the [14]N4 and [15]N4 macrocyclic oxamides, namely 2,3-dioxo-5,6:13,14-dibenzo-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene, 2,3-dioxo-5,6:13,14-dibenzo-9-methyl-7,12-bis(ethoxycarbonyl)-1,4,8,11-tetraazacyclotetradeca-7,11-diene and 2,3-dioxo-5,6:14,15-dibenzo-7,13-bis(ethoxycarbonyl)-1,4,8,12-tetraazacyclotetradeca-7,12-diene] have been prepared and characterized. These complexes are the first examples of oxamido-bridged Cu(II)–Fe(III) heterometallic species. Cryomagnetic studies on [(CuL1)3Fe](ClO4)3·3H2O (1) and [(CuL3)3Fe](ClO4)3·3H2O (3) (77–300 K) revealed that the Cu(II) and Fe(III) ions interact antiferromagnetically through the oxamido bridge, with the exchange integral J=−30.8 cm−1 for 1 and J=−28.7 cm−1 for 3 based on . The interaction parameters have been compared with that of the related [Cu3Mn] compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号