首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energies of different conformers of 22 amino acid molecules and their protonated and deprotonated species were calculated by some density functional theory (DFT; SVWN, B3LYP, B3PW91, MPWB1K, BHandHLYP) and wave function theory (WFT; HF, MP2) methods with the 6-311++G(d,p) basis set to obtain the relative conformer energies, vertical electron detachment energies, deprotonation energies, and proton affinities. Taking the CCSD/6-311++G(d,p) results as the references, the performances of the tested DFT and WFT methods for amino acids with various intramolecular hydrogen bonds were determined. The BHandHLYP method was the best overall performer among the tested DFT methods, and its accuracy was even better than that of the more expensive MP2 method. The computational dependencies of the five DFT methods and the HF and MP2 methods on the basis sets were further examined with the 6-31G(d,p), 6-311++G(d,p), aug-cc-pVDZ, 6-311++G(2df,p), and aug-cc-pVTZ basis sets. The differences between the small and large basis set results have decreased quickly for the hybrid generalized gradient approximation (GGA) methods. The basis set convergence of the MP2 results has been, however, very slow. Considering both the cost and the accuracy, the BHandHLYP functional with the 6-311++G(d,p) basis set is the best choice for the amino acid systems that are rich in hydrogen bonds.  相似文献   

2.
Boronic acids are widely used in materials science, pharmacology, and the synthesis of biologically active compounds. In this Article, geometrical structures and relative energies of dimers of boroglycine, H2N-CH2-B(OH)2, and its constitutional isomer H3C-NH-B(OH)2, were computed using second-order M?ller-Plesset perturbation theory and density functional theory; Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the MP2 calculations, and the Pople 6-311++G(d,p) basis set was employed for a majority of the DFT calculations. Effects of an aqueous environment were incorporated into the results using PCM and COSMO-RS methodology. The lowest-energy conformer of the H2N-CH2-B(OH)2 dimer was a six-membered ring structure (chair conformation; Ci symmetry) with two intermolecular B:N dative-bonds; it was 14.0 kcal/mol lower in energy at the MP2/aug-cc-pVDZ computational level than a conformer with the classic eight-centered ring structure (Ci symmetry) in which the boroglycine monomers are linked by a pair of H-O...H bonds. Compared to the results of MP2 calculations with correlation-consistent basis sets, DFT calculations using the PBE1PBE and TPSS functionals with the 6-311++G(d,p) basis set were significantly better at predicting relative conformational energies of the H2N-CH2-B(OH)2 and H3C-NH-B(OH)2 dimers than corresponding calculations using the BLYP, B3LYP, OLYP, and O3LYP functionals, particularly with respect to dative-bonded structures.  相似文献   

3.
Ab initio calculations and atoms-in-molecules (AIM) analysis have been used to investigate the host-guest interaction in dodecahedral water cages using a variety of guest species that include monatomic (He, Ne, Ar, Kr, and Xe), diatomic (CO, H(2), N(2), O(2), and NO), triatomic (CO(2), NO(2), and O(3)), and polyatomic (CH(4) and NH(3)) molecules. Geometry optimization for the guest species, host cage, and their complexes was carried out using the second order M?ller-Plesset perturbation method with the 6-31G** basis set. Single point energy calculations using the same method but different basis sets (6-31++G**, 6-311++G**, aug-cc-pVDZ, and aug-cc-pVTZ) were carried out for the MP2/6-31G** optimized geometries. The interaction energy between the guest species and the host cage has been obtained in the complete basis set limit by basis set extrapolation.  相似文献   

4.
The influence of various small- and medium-size basis sets used in Hartree-Fock (HF) and density functional theory (DFT)/B3LYP calculations on results of quantum theory of atoms in molecules based (QTAIM-based) analysis of bond parameters is investigated for several single, double, and triple covalent bonds. It is shown that, in general, HF and DFT/B3LYP methods give very similar QTAIM results with respect to the basis set. The smallest 6-31G basis set and DZ-quality basis sets of Dunning type lead to poor results in comparison to those obtained by the most reliable aug-cc-pVTZ. On the contrary, 6-311++G(2df,2pd) and in a somewhat lesser extent 6-311++G(3df,3pd) basis sets give satisfactory values of QTAIM parameters. It is also demonstrated that QTAIM calculations may be sensitive for the method and basis set in the case of multiple and more polarized bonds.  相似文献   

5.
The minimum energy paths for intramolecular proton transfer between the amino nitrogen and carbonyl oxygen atoms in gaseous protonated glycine were estimated at the Hartree-Fock (HF) and second-order M?ller-Plesset Perturbation (MP2) levels of theory. Potential energy profiles and their associated reactant, transition state, and product species calculated at the MP2/6-31G* level were shown to differ significantly from those obtained at the HF/6-31G* level. Effects of electron correlation and basis functions on the calculated geometries and energies of relevant species were examined at the HF, MP2, MP4, CCSD, and B3LYP levels using the 6-31G*, 6-31G**, 6-31+G**, 6-311+G**, 6-31+G(2d,2p), 6-311+G(3df,2p), cc-pVDZ, aug-cc-pVDZ, and cc-pVTZ basis sets. The HF and MP2 optimized levels with the 6-31G*, 6-31G**, 6-31+G**, and 6-311+G** bases were used to calculate the thermodynamic and kinetic properties of the proton transfer reaction at 298.15 K and 1 atm, which include enthalpy, entropy, Gibbs free energy, equilibrium constant, potential energy barriers, tunneling transmission coefficients, and rate constants. Results indicate that the proton in a carbonyl O-protonated glycine undergoes a rapid migration to the amino nitrogen atom, while the reverse process is extremely unfavorable. The objective of this work is to develop practical theoretical procedures for studying proton transfer reactions in amino acids and peptides and to assemble physical data from these model calculations for future references.  相似文献   

6.
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters, but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.  相似文献   

7.
The binding energy spectra (BES) of valence shells of CH2BrCl and CF2BrCl have been measured at a series of different azimuthal angles by an (e, 2e) electron momentum spectrometer employing noncoplanar symmetric geometry at an impact energy of 1200 eV plus binding energy. The experimental momentum profiles (XMPs) are extracted from the sequential BES and compared with the theoretical ones calculated by using Hartree-Fock (HF) and density functional theory (DFT-B3LYP) calculations with 6-311G, 6-311++G**, and aug-cc-pVTZ basis sets. In general, the DFT-B3LYP calculations using the larger basis sets 6-311++G** and aug-cc-pVTZ describe the XMPs well for both molecules. Moreover, the pole strengths of main ionizations from the inner valence orbitals 2a', 3a', and 1a' of CH2BrCl are determined, and the controversial ordering of two outer valence orbitals 3a' ' and 6a' of CF2BrCl has also been assigned unambiguously.  相似文献   

8.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

9.
Direct dynamics simulations at the MP2/6-311++G** level of theory were performed to study C(2)H(5)F --> HF + C(2)H(4) product energy partitioning. The simulation results are compared with experiment and a previous MP2/6-31G* simulation. The current simulation with the larger basis set releases more energy to HF vibration and less to HF + C(2)H(4) relative translation as compared to the previous simulation with the 6-31G* basis set. The HF rotation and vibration energy distributions determined from the current simulation are in overall very good agreement with previous experimental studies of C(2)H(5)F dissociation by chemical activation and IRMPA. A comparison of the simulations with experiments suggests there may be important mass effects for energy partitioning in HX elimination from haloalkanes. The transition state (TS) structures and energies calculated with MP2 and the 6-31G* and 6-311++G** basis sets are compared with those calculated using CCD, CCSD, CCSD(T), and the 6-311++G** basis set.  相似文献   

10.
The (19)F NMR shieldings for 53 kinds of perfluoro compounds were calculated by the B3LYP-GIAO method using the 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31++G(d,p), 6-311G(d,p), 6-311++G(d,p), 6-311G(2d,2p), 6-311++G(2d,2p), 6-311++G(2df,2p), 6-311++G(3d,2p), and 6-311++G(3df,2p) basis sets. The diffuse functions markedly reduce the difference between the calculated and experimental chemical shifts. The calculations using the 6-31++G(d,p) basis set give the chemical shifts within 10 ppm deviations from experimental values except for the fluorine nuclei attached to an oxygen atom, a four- and a six-coordinated sulfur atom, and FC(CF(3))(2) attached to a sulfur atom.  相似文献   

11.
In this work, the experimental and theoretical vibrational spectra of 2-chloro-4-methylaniline (2Cl4MA, C7H8NCl) were studied. FT-IR and FT-Raman spectra of 2Cl4MA in the liquid phase have been recorded in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The structural and spectroscopic data of the molecule in the ground state have been calculated by using Hartree-Fock (HF) and density functional method (B3LYP) with the 6-31G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p) and 6-311G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p) basis sets. The vibrational frequencies have been calculated and scaled values have been compared with experimental FT-IR and FT-Raman spectra. The observed and calculated frequencies are found to be in good agreement. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The DFT-B3LYP/6-311++G(d,p) calculations have been found more reliable than the ab initio HF/6-311++G(d,p) calculations for the vibrational study of 2Cl4MA. The optimized geometric parameters (bond lengths and bond angles) were compared with experimental values of aniline and p-methylaniline molecules.  相似文献   

12.
Despite the widespread use of boronic acids in materials science and as pharmaceutical agents, many aspects of their structure and reactivity are not well understood. In this research the boronic acid dimer, [HB(OH)(2)](2), was studied by second-order M?ller-Plesset (MP2) perturbation theory and coupled cluster methodology with single and double excitations (CCSD). Pople split-valence 6-31+G*, 6-311G**, and 6-311++G** and Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were employed for the calculations. A doubly hydrogen-bonded conformer (1) of the dimer was consistently found to be lowest in energy; the structure of 1 was planar (C(2h)) at most computational levels employed but was significantly nonplanar (C(2)) at the MP2/6-311++G** and CCSD/6-311++G** levels, the result of an intrinsic problem with Pople-type sp-diffuse basis functions on heavy atoms. The dimerization energy, enthalpy, and free energy for the formation of (1) from the exo-endo conformer of the monomer were -10.8, -9.2, and +1.2 kcal/mol, respectively, at the MP2/aug-cc-pVTZ level. Several other hydrogen-bonded conformers of the dimer were local minima on the potential energy surface (PES) and ranged from 2 to 5 kcal/mol higher in energy than 1. Nine doubly OH-bridged conformers, in which the boron atoms were tetracoordinated, were also local minima on the PES, but they were all greater than 13 kcal/mol higher in energy than 1; doubly H-bridged structures proved to be transition states. MP2 and CCSD results were compared to those from the BLYP, B3LYP, OLYP, O3LYP, PBE1PBE, and TPSS functionals with the 6-311++G** and aug-cc-pVTZ basis sets; the PBE1PBE functional performed best relative to the MP2 and CCSD results. Self-consistent reaction field (SCRF) calculations predict that boronic acid dimerization is less favorable in solution than in vacuo.  相似文献   

13.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

14.
The conformational profiles of unbound all-trans and 9-cis retinoic acid (RA) have been determined using classical and quantum mechanical calculations. Sixty-six all-trans-RA (ATRA) and forty-eight 9-cis-RA energy minimum conformers were identified via HF/6-31G* geometry optimizations in vacuo. Their relative conformational energies were estimated utilizing the M06, M06-2x and MP2 methods combined with the 6-311+G(d,p), aug-cc-pVDZ and aug-cc-pVTZ basis sets, as well as complete basis set MP2 extrapolations using the latter two basis sets. Single-point energy calculations performed with the M06-2x density functional were found to yield similar results to MP2/CBS for the low-energy retinoic acid conformations. Not unexpectedly, the conformational propensities of retinoic acid were governed by the orientation and arrangement of the torsion angles associated with the polyene tail. We also used previously reported QM/MM X-ray refinement results on four ATRA-protein crystal structures plus one newly refined 9-cis-RA complex (PDB ID 1XDK) in order to investigate the conformational preferences of bound retinoic acid. In the re-refined RA conformers the conjugated double bonds are nearly coplanar, which is consistent with the global minimum identified by the Omega/QM method rather than the corresponding crystallographically determined conformations given in the PDB. Consequently, a 91.3% average reduction of the local strain energy in the gas phase, as well as 92.1% in PCM solvent, was observed using the QM/MM refined structures versus the PDB deposited RA conformations. These results thus demonstrate that our QM/MM X-ray refinement approach can significantly enhance the quality of X-ray crystal structures refined by conventional refinement protocols, thereby providing reliable drug-target structural information for use in structure-based drug discovery applications.  相似文献   

15.
The experimental and theoretical vibrational spectra of 3- and 4-pyridineboronic acids (abbreviated as p3 and p4) were studied. The Fourier transform Raman and Fourier transform infrared spectra of p3 and p4 molecules were recorded in the solid phase. The structural and spectroscopic analysis of the p3 and p4 acids were made by using density functional harmonic calculations. Both p3 and p4 only one form was most stable using B3LYP level with the 6-31G(d), 6-31G(d,p), 6-311G(d), 6-311G(d,p) and 6-311++G(d,p) basis sets. Selected experimental bands were assigned based on the scaled theoretical wavenumbers. Finally, geometric parameters, infrared and Raman bands and intensities were compared with experimental data of the molecules.  相似文献   

16.
17.
Yinghong Sheng 《Tetrahedron》2006,62(29):7014-7020
Three possible reaction schemes for the cycloaddition reaction between methyleneketene and cyclopentadiene were studied by DFT (density functional theory) and ab initio calculations. All of these cycloaddition reactions are exothermic, concerted but nonsynchronous processes. The computed activation energies indicate that the norbornene product yielded from a 1,2-addition of methyleneketene with cyclopentadiene (reaction (1)) is the primary product. The performance of various computational methodologies, MP2, MP4, and CCSD(T), in conjunction with a wide array of basis sets, 6-31G(d), 6-311+G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ, in obtaining reliable activation and reaction energies of the reactions under investigation has been critically analyzed.  相似文献   

18.
This work compares the performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene. Silylene, its cation and anion have been studied in 1 A 1, 2 A 1 and 2 B 1 states, respectively, in the gas phase and C2v symmetry. The methods considered are second-order Møller-Plesset perturbation theory (MP2), the density functional theory (DFT), Gaussian-2 (G2) and complete basis set methods (CBS-4M and CBS-Q). The basis sets used are 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p). The functional used for the DFT method is B3LYP. Silylene and its cation and anion have been optimised using the MP2 and DFT methods and the named basis sets. Single-point energy calculations (G2, CBS-4M and CBS-Q) were performed using MP2/6-311++G(d,p) structures and these energies have been used to calculate atomisation energy, ionisation energy and adiabatic electron affinity. Frequency calculations were also done and the raw vibrational frequencies were assigned. It is interesting to note the close similarity between the predicted parameters and some of the available literature values. The results obtained are consistent and converge with different basis sets with improved size and quality. However, the parameters obtained are very much method dependent.  相似文献   

19.
Ab initio calculations of the structural, energetic, vibrational, and magnetic characteristics of the lowest-lying structures for isolated molecules and ions of light-metal tetrahydroborates (Li, Na, Be, Mg, and Al) have been performed by the perturbation theory (MP2), quadratic configuration interaction (QCISD(T)), coupled cluster (CCSD(T)), and density functional theory (B3LYP) methods using the 6-31G*, 6-31G**, 6-311+G**, and 6-311++G** basis sets. The trends in the behavior of the structural parameters, the energies of different decomposition pathways, barriers to internal rotation of BH4 groups, normal mode frequencies, magnetic shielding constants, and spin density distribution (in radicals) have been analyzed in various related series of these compounds. The results obtained by ab initio methods and at the DFT level are compared. The economical approximation B3LYP/6-311++G**//B3LYP/6-311+G** adequately reproduces the results obtained at the higher level of theory CCSD(T)/6-311++G*s*//MP2/6-31G* even though it requires considerably shorter CPU times and smaller amounts of memory.  相似文献   

20.
The conformational analysis of 6,8-diphenylimidazo[1,2-α]pyrazine molecule (abbreviated as 68DIP) was performed by using B3LYP/6-31G(d) level of theory to find the most stable form. Two staggered stable conformers were observed on the torsional potential energy surface. The equilibrium geometry, bonding features and vibrational frequencies of 68DIP have been investigated by using the DFT (B3LYP) and HF methods for the lowest energy conformer. The first order hyperpolarizability (β(total)) of this molecular system and related properties (β, μ, <α> and Δα) are calculated using HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) methods based on the finite-field approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and C-H?N intramolecular hydrogen-bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second order delocalization energies E((2)) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. UV-vis spectrum of the compound was recorded and electronic properties, such as HOMO, LUMO energies, excitation energies and wavelength were performed by TD-DFT/B3LYP, CIS and TD-HF methods by using 6-311++G(d,p) basis set. Finally, the calculation results were applied to simulated infrared spectra of the title compound which show good agreement with observed spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号