首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This review concerns the behavior of a new class of LC composites with physical networks. These composites are prepared through the addition of some low-molecular-mass compounds (gelators) containing various functional groups to liquid crystals. In the medium of liquid crystals, gelators can form gels via non-covalent interactions, thereby stabilizing their structures. The structures of LC composites, their morphologies, and their optical and electro-optical properties are examined, and some application areas of these materials are illustrated.  相似文献   

2.
Low molecular mass organic gelator (LMOG) as an important component of liquid crystal physical gel has a great influence on the electro-optical properties. In this paper, three analogues of amide gelator were synthesized and employed as LMOGs in nematic liquid crystal 5CB. Both hydrogen-bonding and pi-pi-stacking interactions in the gel phase were found to stabilize the self-assembled structure. It was observed that the morphology was highly dependent on the crystallinity of gelators, which was affected by the intensity of hydrogen bonding. The thicker fibril was obtained with higher crystallinity of LMOG, while the thinner fibril was obtained with lower crystallinity. Moreover, the electro-optical properties of liquid crystal physical gels were proposed to be related to the interaction between the fibrils and the liquid crystal molecules.  相似文献   

3.
Effects of the content of fluorinated alkene-terminated liquid crystal (LC) molecules on the physical properties of the fluorinated alkene-terminated LC/E8 mixture were studied. The morphology and electro-optical properties as they doped in polymer-dispersed liquid crystal (PDLC) films were investigated. The detailed discussion of the obtained results is given. As a result, comparing with the physical properties of the series of LC mixtures with the same content of the analogous fully saturated compounds doped with E8, we find that the birefringence is significantly larger for the LC mixture with the alkene-terminated materials. Both fluorinated alkene-terminated LC molecules and the analogous fully saturated compounds doped with E8 reduce the driving voltage of PDLC films. Moreover, PDLC films with the fluorinated alkene-terminated LC molecules possessed higher contrast ratio and faster response time than that of the PDLC films prepared by adding the same mass fraction of the analogous fully saturated compounds. Thus, the ability to manipulate physical properties of LC mixture and electro-optical properties of PDLC films by changing the LC molecular structures may have future relevance for new LC structures design and applications of PDLC films.  相似文献   

4.
In recent years, liquid crystals (LCs) responding to light or electrical fields have gained significant importance as multifunctional materials. Herein, two new series of photoswitchable bent-core liquid crystals (BCLCs) derived from 4-cyanoresorcinol as the central core connected to an azobenzene based wing and a phenyl benzoate wing are reported. The self-assembly of these molecules was characterized by differential scanning calorimetry (DSC), polarizing light microscopy (POM), electro-optical, dielectric, second harmonic generation (SHG) studies, and XRD. Depending on the direction of the COO group in the phenyl benzoate wing, core-fluorination, temperature, and the terminal alkyl chain length, cybotactic nematic and lamellar (smectic) LC phases were observed. The coherence length of the ferroelectric fluctuations increases continuously with decreasing temperature and adopts antipolar correlation upon the condensation into superparaelectric states of the paraelectric smectic phases. Finally, long-range polar order develops at distinct phase transitions; first leading to polarization modulated and then to nonmodulated antiferroelectric smectic phases. Conglomerates of chiral domains were observed in the high permittivity ranges of the synclinic tilted paraelectric smectic phases of these achiral molecules, indicating mirror symmetry breaking. Fine-tuning of the molecular structure leads to photoresponsive bent-core (BC)LCs exhibiting a fast and reversible photoinduced change of the mode of the switching between ferroelectric- and antiferroelectric-like as well as a light-induced switching between an achiral and a spontaneous mirror-symmetry-broken LC phase.  相似文献   

5.
Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials. This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules. First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding. Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators. Dynamic covalent bonding can be involved to form low molecular weight gelators. Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators. Two catalogues of gels show different properties arising from their different structures. This review aims to illustrate the structure-property relationships of these dynamic covalent gels.  相似文献   

6.
《Liquid crystals》2000,27(10):1337-1341
We have investigated the morphology and electro-optical properties of reverse mode polymer dispersed liquid crystals as a function of liquid crystal loading. Reverse mode shutters have been obtained by a polymerization-induced phase separation of mixtures, consisting of a liquid crystalline monomer and a non-reactive nematic liquid crystal, placed between rough conductive surfaces. Such surfaces are able to keep the photopolymerizable mixtures homeotropically aligned without the use of any aligning polymer substrate. OFF state transmittances are always larger than 80% and the switching fields decrease if the non-reactive liquid crystal percentage is increased. Both rise and decay times are always lower than 10 ms. The electro-optical properties have been related to the sample morphology and a simple mode is proposed.  相似文献   

7.
Self-organization of disc-like molecules: chemical aspects   总被引:2,自引:0,他引:2  
The hierarchical self-assembly of disc-shaped molecules leads to the formation of discotic liquid crystals. These materials are of fundamental importance not only as models for the study of energy and charge migration in self-organized systems but also as functional materials for device applications such as, one-dimensional conductors, photoconductors, light emitting diodes, photovoltaic solar cells, field-effect transistors and gas sensors. The negative birefringence films formed by polymerized nematic discotic liquid crystals have been commercialized as compensation foils to enlarge the viewing angle of commonly used twisted nematic liquid crystal displays. To date the number of discotic liquid crystals derived from more than 50 different cores comes to about 3000. This critical review describes, after an in-depth introduction, recent advances in basic design principles and synthetic approaches towards the preparation of most frequently encountered discotic liquid crystals.  相似文献   

8.
We have investigated the morphology and electro-optical properties of reverse mode polymer dispersed liquid crystals as a function of liquid crystal loading. Reverse mode shutters have been obtained by a polymerization-induced phase separation of mixtures, consisting of a liquid crystalline monomer and a non-reactive nematic liquid crystal, placed between rough conductive surfaces. Such surfaces are able to keep the photopolymerizable mixtures homeotropically aligned without the use of any aligning polymer substrate. OFF state transmittances are always larger than 80% and the switching fields decrease if the non-reactive liquid crystal percentage is increased. Both rise and decay times are always lower than 10 ms. The electro-optical properties have been related to the sample morphology and a simple mode is proposed.  相似文献   

9.
Anisotropic physical gels of liquid crystals are obtained by the formation of non‐covalently‐bonded networks through self‐organization of low molecular weight compounds in nematic solvents. They exhibit thermoreversible transitions between isotropic liquid and isotropic gel, and between isotropic gel and liquid‐crystalline gel, whose temperatures are dependent on the components. Electro‐optic properties of liquid‐crystalline gels are examined with twisted nematic cells. A nematic liquid crystal in a gel structure can respond to electric fields twice faster than a single liquid‐crystalline component.  相似文献   

10.
童晓茜  单天宇  马猛  陈思  王旭 《高分子学报》2017,(10):1652-1661
利用凝胶因子自组装可赋予凝胶网络形状、强度等的特性,设计制备了多面体齐聚倍半硅氧烷(POSS)核有机无机杂化dendrimer(POSS-G1-BOC)凝胶因子并将其引入到液晶客体分子中,获得了兼具力学性能与响应特性的超分子液晶凝胶.在系统研究该液晶凝胶的凝胶行为、响应特性、表面形貌、组装机理及力学性质的基础之上,制备了基于透明柔性可拉伸导电薄膜(PU/Ag NWs)的三明治结构液晶光散射显示器件.该器件在低电压(10 V,DC)驱动下即可实现较高对比度的显示效果,不仅可以在弯曲至曲率为0.14 cm-1的条件下使用,而且在拉伸至原始长度的120%时,仍可保持自身的电控响应特性,有望将其广泛应用于可穿戴设备、智能响应性材料等领域.  相似文献   

11.
Composites of nematic liquid crystals (NLCs) and ferroelectric barium titanate (BaTiO3) nanoparticles (NPs) have been prepared. The alignments of NPs in the host medium have been demonstrated. Effect of NPs doping on various display parameters of NLCs, namely, threshold voltage, dielectric anisotropy and splay elastic constant has been studied using electro-optical and dielectric studies. The nematic ordering of host supports alignment of NPs parallel to the director which consequently improves electro-optical parameters in the composite system. The dielectric and electro-optic properties of LC–NPs composites have been discussed in frame of conventional theories of NLCs.  相似文献   

12.
Thermodynamical, optical, dielectric and electro-optical characterisation of nematic liquid crystals (LCs) and silver nanoparticle (NP) composites have been carried out. Transition temperatures of pure and composites systems have been measured. Thermodynamical studies suggest increase of clearing temperature of the composite material as compared to the pure material. Threshold voltage for switching from bright to dark state and splay elastic constant of the pure and composite materials have been determined. From frequency dependence of dielectric measurements, permittivity, loss, relaxation frequency and dielectric strength of flip-flop mechanism of LC molecules in the nematic phase have been calculated. Dielectric properties of composites have been explained in reference of Maier and Meier theory. The effects of doping of NPs on dielectric and electro-optic properties of LC-NP composites have been discussed.  相似文献   

13.
A new perylene bisimide (PBI) dye self‐assembles through hydrogen bonds and π–π interactions into J‐aggregates that in turn self‐organize into liquid‐crystalline (LC) columnar hexagonal domains. The PBI cores are organized with the transition dipole moments parallel to the columnar axis, which is an unprecedented structural organization in π‐conjugated columnar liquid crystals. Middle and wide‐angle X‐ray analyses reveal a helical structure consisting of three self‐assembled hydrogen‐bonded PBI strands that constitute a single column of the columnar hexagonal phase. This remarkable assembly mode for columnar liquid crystals may afford new anisotropic LC materials for applications in photonics.  相似文献   

14.
《Liquid crystals》1999,26(4):601-604
The electro-optical properties of a novel device comprising nematic liquid crystals and a thin film oxide ferroelectric (OFE) substrate are reported. The OFE was the lead zirconate-lead titanate, PZT, system with the molar composition 30:70, respectively. The first evidence of the interaction of nematic liquid crystals with the spontaneous polarisation ( Ps ) of an OFE is presented. Coupling of the ferroelectric Ps from poled grains (5-10mum in diameter) with the liquid crystal results in local Freedericksz transitions, allowing the grain structure of the substrate to be visualized. Further, this novel device structure allows the director tilt and anchoring energy of commercially available nematic materials to be quantified.  相似文献   

15.
The optical and electro-optical properties of filled nematic liquid crystals, nematic systems with added colloidal silica nanoparticles ( ≤6%), have been studied. The macroscopic near IR birefringence of cells constructed from these materials was measured for wavelengths between 2 and 5 mum, and a wavelength independent value of 0.16 was obtained. The visible optical behaviour of cells formed with untreated ITO substrates using both filled nematic, and filled nematic and dichroic dyes was similar to those observed in polymer dispersed liquid crystals. At an electric field of 1-2 V μm -1 , the cells were highly transmitting, while at low fields they were highly scattering. The effects of colloidal silica nanoparticle concentration, cell thickness, electric field and substrate preparation (rubbed polyimide versus no surface treatment) on the electro-optical behaviour of these cells were studied.  相似文献   

16.
Liquid crystals are molecular materials that combine anisotropy with dynamic nature. Recently, the use of hydrogen bonding for the design of functional liquid crystalline materials has been shown to be a versatile approach toward the control of simple molecularly assembled structures and the induction of dynamic function. A variety of hydrogen‐bonded liquid crystals has been prepared by molecular self‐assembly processes via hydrogen bond formation. Rod‐like and disk‐like low‐molecular weight complexes and polymers with side‐chain, main‐chain, network, and guest‐host structures have been built by the complexation of complimentary and identical hydrogen‐bonded molecules. These materials consist of closed‐type hydrogen bondings. Another type of hydrogen‐bonded liquid crystals consists of open‐type hydrogen bonding. In this case, the introduction of hydrogen bonding moieties, such as hydroxyl groups, induces microphase segregation leading to liquid crystalline molecular order. Moreover, liquid crystalline physical gels have been prepared by the molecular aggregation of hydrogen‐bonded molecules in non‐hydrogen‐bonded liquid crystals. They show significant electrooptical properties. An anisotropic gel is a new type of anisotropic materials forming heterogeneous structures.  相似文献   

17.
The optical and electro-optical properties of filled nematic liquid crystals, nematic systems with added colloidal silica nanoparticles (? 6%), have been studied. The macroscopic near IR birefringence of cells constructed from these materials was measured for wavelengths between 2 and 5 mum, and a wavelength independent value of 0.16 was obtained. The visible optical behaviour of cells formed with untreated ITO substrates using both filled nematic, and filled nematic and dichroic dyes was similar to those observed in polymer dispersed liquid crystals. At an electric field of 1–2 V μm -1, the cells were highly transmitting, while at low fields they were highly scattering. The effects of colloidal silica nanoparticle concentration, cell thickness, electric field and substrate preparation (rubbed polyimide versus no surface treatment) on the electro-optical behaviour of these cells were studied.  相似文献   

18.
The structural, material and electro-optical properties of novel, halogenated nematic liquid crystals which contain quite different functional groups are correlated. Synergisms which lead to broad mesophases, low viscosities and large dielectric anisotropies further improve the performance of actively and passively addressed, high information content liquid crystal displays. Some recent developments, such as operation of supertwisted nematic displays with not only linear, but also circularly polarized light, are included. A recently presented, efficient liquid crystal colour projection concept, whose functional elements, i.e. polarizers, filters and modulators, consist entirely of liquid crystal devices, is reviewed. Its circular polarizers and filters are made up of novel, negative dielectric anisotropic cholesteric liquid crystals designed such that, dislocation-free, optically uniform, planar textures result from electric field alignment. Novel, non-linear optical ferroelectric liquid crystals which exhibit very large and stable second order harmonic coefficients d22 = 5 pm V-1 have the potential to be used in integrated optical devices, such as frequency converters and Pockels modulators. Photopolymerization of polymer-coated substrates with linearly polarized light is shown to induce anisotropic, uniaxial orientation of the polymer side chains without mechanical treatment. The resulting anisotropic dispersive surface interaction forces align adjacent liquid crystal molecules parallel. This new, photoinduced liquid crystal aligning technique renders the generation of azimuthal director patterns possible. It opens up interesting possibilities for realizing new optical and electro-optical devices, including hybrid and stereo liquid crystal displays.  相似文献   

19.
Dielectric, optical and electro-optical properties of four chlorinated nematic liquid crystal compounds and a eutectic mixture were characterized. Some chlorinated liquid crystals are found to exhibit a wide nematic range, modest dielectric and optical anisotropies, low viscosity and small UV absorption. Potential application of mixtures containing chlorinated liquid crystals for information displays in the visible spectral region is foreseeable.  相似文献   

20.
Here we report on how metastable supramolecular gels can be formed through seeded self‐assembly of multicomponent gelators. Hydrazone‐based gelators decorated with non‐ionic and anionic groups are formed in situ from hydrazide and aldehyde building blocks, and lead through multiple self‐sorting processes to the formation of heterogeneous gels approaching thermodynamic equilibrium. Interestingly, the addition of seeds composing of oligomers of gelators bypasses the self‐sorting processes and accelerates the self‐assembly along a kinetically favored pathway, resulting in homogeneous gels of which the network morphologies and gel stiffness are markedly different from the thermodynamically more stable gel products. Importantly, over time, these metastable homogeneous gel networks are capable of converting into the thermodynamically more stable state. This seeding‐driven formation of out‐of‐equilibrium supramolecular structures is expected to serve as a simple approach towards functional materials with pathway‐dependent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号