首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulation results are presented for thermal treatment and ignition of coal-water fuel drops under conditions of radiative-convective heating. The data demonstrate reasonbble compliance between theory and experiment for the integral parameter of ignition process — the delay time of ignition. The radiative component of heat transfer is significant for parameters and conditions of ignition. The increase in the fuel particle size makes this influence bigger. Prognostic potential was evaluated for differnet models of radiative heat tarnsfer. The delay time of ignition obtained from radiative heat transfer model “grey wall” is in good agreement with experimental data. Meanwhile, the method based on radiation diffusion approximation gives the simulation data for delay time much higher than experimental data. It is confirmed that while the process of inflammation of a coal-water particle, the key impotance belongs not to fuel-oxidizer reactions, but rather to a chain of heat treatment events, such as radiative-convective heating, water evaporation, and thermal decomposition of fuel.  相似文献   

2.
The macroscopic patterns of a temperature change at the center of a droplet of three-component (coal, water, petroleum) composite liquid fuel (CLF) were studied using a low-inertia thermoelectric converter and system of high-speed (up to 105 frames per second) video recording during the induction period at different heating intensity by the air flow with variable parameters: temperature of 670?870 K and motion velocity of 1?4 m/s. The studies were carried out for two groups of CLF compositions: fuel based on brown coal and coal cleaning rejects (filter cake). To assess the effect of liquid combustible component of CLF on characteristics of the ignition process, the corresponding composition of two-component coal-water fuel (CWF) was studied. The stages of inert heating of CLF and CWF droplets with characteristic size corresponding to radius of 0.75?1.5 mm, evaporation of moisture and liquid oil (for CLF), thermal decomposition of the organic part of coal, gas mixture ignition, and carbon burnout were identified. Regularities of changes in the temperature of CLF and CWF droplets at each of identified stages were identified for the cooccurrence of phase transitions and chemical reactions. Comparative analysis of the times of ignition delay and complete combustion of the droplets of examined fuel compositions was performed with varying droplet dimensions, temperatures, and oxidant flow velocity.  相似文献   

3.
Fuel-flexible aircraft propulsion systems using compression ignition engines will require novel strategies for reducing the ignition delay of low-reactivity fuels to feasible timescales. Hot surface ignition of fuel sprays has been implemented in some practical situations, but the complex nature of flame formation within the spray structure poses significant challenges. In order to design next-generation ignition devices, the capacity of hot surface heating elements to promote fuel spray ignition must be investigated. In this study, a rapid compression machine (RCM) was used to examine the ignition process of a single kerosene-based F-24 jet fuel spray with a cylindrical heating element inserted into the spray periphery. The experiments, performed with moderately high injection pressures of 40 MPa, have demonstrated two modes of ignition governed by surface temperature and insertion depth of the heating element. There exists an optimal position where the heating element tip is located in the fuel vapor cone around the liquid spray. For this configuration, a critical surface temperature was identified (~1250 K), above which short ignition delays associated with a “spray ignition” mode are consistently achieved. In this case, a local ignition flame kernel propagates downstream to the flame lift-off length before full ignition of the spray. In comparison, below the critical temperature a slower “volumetric” mode results. The extended ignition delays associated with this mode may be impractical for compression ignition engines operating at high speeds and increased altitude.  相似文献   

4.
Numerical simulations were used to examine a set of interrelated physicochemical processes involved in the ignition of a liquid fuel film by a low-power laser beam. The delay time of ignition of a liquid fuel film and the ignition zone location were determined. The scale of influence of the power and radius of the laser beam on the ignition characteristics was determined. The ignition criteria of ignition were identified.  相似文献   

5.
Processes of heat and mass transfer with phase transitions and chemical reactions at the ignition of a liquid fuel droplet colliding with the surface of a hot metal substrate are numerically investigated. The droplet ignition delay times are found. The scale of the influence of the temperature of the substrate, droplet, and oxidizer, and also the droplet size and spreading rate on the ignition inertia is determined. Conditions in which the liquid fuel droplet spread plays an important role in the ignition process are found.  相似文献   

6.
A complex of interrelated heat-mass transfer processes at gas-phase ignition of a typical liquid fuel by a hot metal particle immersed partially into a liquid is investigated numerically. The scale of influence of the radiation heat exchange at particle—liquid fuel and particle—gas—vapor mixture interfaces is found. Conditions under which the impact of this factor can be neglected are determined.  相似文献   

7.
The ignition of a typical liquid fuel with a limited-energy source, a small metal particle heated to high temperature is numerically simulated with consideration given to the possible turbulization of the fuel vapor flow. The dependences of the integral ignition characteristics on the key parameters of the local heat source are established. The integral ignition characteristics, as well as the fields of fuel vapor concentrations and velocities predicted by models accounting for the laminar and turbulent modes of the vapor-oxidizer mixture flow are compared.  相似文献   

8.
The results of theoretical studies of the processes of ignition of water-coal fuel droplets based on brown coal, semi-anthracite, anthracite, long-flame and fat coal under the conditions corresponding to the combustion spaces of typical modern boilers are presented. The influence of the degree of metamorphism (structural-molecular transformation of organic matter of coal) and concentration of the organic component of the base fuel (coal) on the conditions of ignition of water-coal fuel particles is analyzed. It is determined that the type and grade of coal have a significant impact on the dynamics of fuel ignition. It was shown that in the case of ignition of coal-water fuel made of mineral coal, the ignition of particles based on semi-anthracite and anthracite is the fastest (by 20%), and ignition of coal-water fuels of fat coal is the slowest. The latter is explained by the lower heat capacity and thermal effect of pyrolysis of this fuel, as well as the relatively high heat conductivity of anthracite coal as compared to fat coal. It has been determined that drops of coal-water fuel made of brown coal ignite substantially (2 times) faster than drops prepared from coal of coal-water particles. This is due to the high content of volatiles in the composition of brown coal.Comparative analysis of the main characteristics of the process: ignition delay times (tign) obtained by mathematical modeling and experiments showed a satisfactory agreement between the theoretical and experimental values of tign.  相似文献   

9.
The problem of ignition in the conditions of nonideal contact between liquid fuel and a single metallic particle heated to high temperatures is numerically solved. A gas-phase ignition model is created with regard to the heat-and-mass transfer processes in the gas region near the ignition source and the layer separating the particle and the fuel. The scale of the impact of the heat source surface roughness upon the ignition characteristics in a hot particle-liquid fuel-oxidant system is determined.  相似文献   

10.
A theoretical analysis of the ignition of a liquid fuel vapor-air mixture by a moving small source of heating was performed. A gas-phase model of the ignition with consideration given to heat transfer, liquid fuel evaporation, diffusion and convective motion of fuel vapor in the oxidizer medium, crystallization of the heating source, kinetics of the vaporization and ignition processes, temperature dependence of the thermophysical characteristics of the interacting substances, and character of motion of the heating source in the vapor-gas mixture was developed. The values of the ignition delay time τ d , the main characteristic of the process, were determined. It was established how τ d depends on the initial temperature, heating source sizes, velocity and trajectory of the heating source, and ambient air temperature.  相似文献   

11.
Spectrally resolved visible and ultraviolet emissions are investigated as a basis for wide-range, individual-cycle measurement of the local fuel concentration in spark-ignition engines. The 388-nm CN emission intensity, normalized by the spark-discharge energy during the observation interval (typically 150 μs at the start of the glow discharge), is found to be the most useful measure of fuel concentration when data are required over a wide range. Calibration data for homogeneous propane–air and isooctane–air mixtures over a wide range of cylinder gas conditions at the time of ignition collapse to a single curve when the fuel concentration is expressed in terms of the number density of carbon atoms. The carbon number densities measured in this study correspond to fuel–air equivalence-ratios in the range 0–3 at 95% throttle conditions. Random and systematic errors are 10% or less. Applied to an engine in which liquid fuel is injected directly into the cylinder, the technique reveals substantial cyclic fluctuations in the fuel concentration at the spark gap for early fuel injection (intended to produce a homogeneous fuel–air mixture in the combustion chamber) and large fuel-concentration fluctuations for late fuel injection (which produces a highly stratified mixture). The results also show that for stratified operation with a fixed fuel-injection timing, a spark timing that is later than optimum leads to incomplete combustion in many cycles due to fuel–air ratios that are too lean for good ignition and rapid flame development. Received: 6 November 2001 / Revised version: 6 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-586/986 0176, E-mail: todd.fansler@gm.com  相似文献   

12.
Review of Japanese fusion program and role of inertial fusion   总被引:1,自引:0,他引:1  
The high compression of 600 times liquid density and the recent fast heating of a compressed core to 1-keV temperature have provided proof-of-principle of the fast ignition concept, and these results have significantly contributed to approve first phase of the Fast Ignition Realization EXperiment (FIREX) project. The goal of FIREX-I is to demonstrate fast heating of a fusion fuel up to the ignition temperature of 5–10 keV. Although the fuel size of FIREX-I is too small to ignite, sufficient heating will provide the scientific viability of ignition-and-burn by increasing the laser energy thereby the fuel size. Based on the result of FIREX-I, the decision of the start of FIREX-II to achieve ignition-and-burn can be made. The FIREX program is under the collaboration of the Institute of Laser Engineering and the National Institute for Fusion Science.  相似文献   

13.
The effects of blending ratio on mixtures of an alcohol-to-jet (ATJ) fuel and a conventional petroleum-derived fuel on first stage ignition and overall ignition delay are examined at engine-relevant ambient conditions. Experiments are conducted in a high-temperature pressure vessel that maintains a small flow of dry air at the desired temperature (825 K and 900 K) and pressure (6 MPa and 9 MPa) for fuel injections from a custom single-hole, axially-oriented injector, representing medium (7.5 mg) and high (10 mg) engine loading. Formaldehyde, imaged using planar laser-induced fluorescence, is measured at discrete time steps throughout the first and second stage ignition process and is used as a marker of unburned short-chain hydrocarbons formed after the initial breakdown of the fuel. The formaldehyde images are used to calculate the first stage ignition delay for each ambient and fuel loading condition. Chemiluminescence imaging of excited hydroxyl radical at 75 kHz is used to determine the overall ignition delay. At all conditions, increased volume fraction of ATJ resulted in longer, but non-linearly increasing, overall ignition delay. Across all of the blends, first stage ignition delay accounted for about 15% of the increase in overall ignition delay compared to the military's aviation kerosene, F-24, which is Jet A with additives, while extended first stage ignition duration accounted for 85% of the increase. It is observed that blends consisting of 0–60% by volume of the low cetane number ATJ fuel produced nearly identical first stage ignition delays. These results will inform the development of ignition models that can capture the non-linear effects of fuel blending on ignition processes.  相似文献   

14.
Characteristics of gas-phase ignition of grinded brown coal (brand 2B, Shive-Ovoos deposit in Mongolia) layer by single and several metal particles heated to a high temperature (above 1000 K) have been investigated numerically. The developed mathematical model of the process takes into account the heating and thermal decomposition of coal at the expense of the heat supplied from local heat sources, release of volatiles, formation and heating of gas mixture and its ignition. The conditions of the joint effect of several hot particles on the main characteristic of the process–ignition delay time are determined. The relation of the ignition zone position in the vicinity of local heat sources and the intensity of combustible gas mixture warming has been elucidated. It has been found that when the distance between neighboring particles exceeds 1.5 hot particle size, an analysis of characteristics and regularities of coal ignition by several local heat sources can be carried out within the framework of the model of “single metal particle / grinded coal / air”. Besides, it has been shown with the use of this model that the increase in the hot particle height leads, along with the ignition delay time reduction, to a reduction of the source initial temperatures required for solid fuel ignition. At an imperfect thermal contact at the interface hot particle / grinded coal due to the natural porosity of the solid fuel structure, the intensity of ignition reduces due to a less significant effect of radiation in the area of pores on the heat transfer conditions compared to heat transfer by conduction in the near-surface coal layer without regard to its heterogeneous structure.  相似文献   

15.
Fuel-stratified combustion has broad application due to its promising advantages in extension of lean flammability limit, improvement of flame stabilization, enhancement of lean combustion, etc. In the literature, there are many studies on flame propagation in fuel-stratified mixtures. However, there is little attention on ignition in fuel-stratified mixtures. In this study, one-dimensional numerical simulation is conducted to investigate the ignition and spherical flame kernel propagation in fuel-stratified n-decane/air mixtures. The emphasis is placed on assessing the effects of fuel stratification on the ignition kernel propagation and critical ignition condition. First, ignition and flame kernel propagation in homogeneous n-decane/air mixture are studied and different flame regimes are identified. The minimum ignition energy (MIE) of the homogeneous n-decane/air mixture is obtained and it is found to be very sensitive to the equivalence ratio under fuel-lean conditions. Then, ignition and flame kernel propagation in fuel-stratified n-decane/air mixture are investigated. The inner equivalence ratio and stratification radius are found to have great impact on ignition kernel propagation. The MIEs at different fuel-stratification conditions are calculated. The results indicate that for fuel-lean n-decane/air mixture, fuel stratification can greatly promote ignition and reduce the MIE. Six distinct flame regimes are observed for successful ignition in fuel-stratified mixture. It is shown that the ignition kernel propagation can be induced by not only the ignition energy deposition but also the fuel-stratification. Moreover, it is found that to achieve effective ignition enhancement though fuel stratification, one needs properly choose the values of stratification radius and inner equivalence ratio.  相似文献   

16.
A numerical study of the ignition of the liquid fuel drop-massive heat source-air and liquid fuel-small-size heat source-air systems was performed. It was established how the ignition delay times of single drops and large amounts of liquid fuel depend on the temperature of the heated body. Possible modes of ignition of a typical fuel by small and extensive heat sources were identified.  相似文献   

17.
The work is devoted to the determination of main peculiarities of the two-phase mixture formation in the flow duct of the gas-dynamic ignition system. The paper presents a mathematical model and the results of a numerical and experimental investigation of the peculiarities of the unsteady gas flow as well as the processes of the fragmentation and evaporation of droplets in the resonance cavity of the gas-dynamic ignition system. Different configurations of injectors for liquid supply are considered, and the influence of the most significant factors on heat release and concentration of the evaporated liquid in the resonance cavity is investigated. The obtained data may be used for choosing the injectors and the regimes of the liquid fuel supply, which enable one to ensure the stable conditions for igniting two-phase fuel mixtures in the gas-dynamic ignition system.  相似文献   

18.
A nonlinear nonstationary 3D problem of heat and mass transfer at gas phase ignition of a combustible liquid spread on the surface of a solid body by a metal particle heated to a high temperature is solved. This is done within the framework of a model taking into account the heat conduction and evaporation of the liquid, the diffusion and convection of the combustible vapors in the oxidizer medium, the crystallization of the ignition source, the kinetics of the processes of evaporation and ignition of liquids, the dependence of the thermophysical characteristics of the interacting substances on the temperature, and the moisture content of the oxidizer—air. The dependences of the ignition delay time of the liquid on the temperature and sizes of the heating source are established. Limiting values of the temperature and particle sizes at which the ignition conditions take place are determined. The influence of the air humidity on the inertia of the process being investigated is analyzed. A comparison of numerical values of typical parameters of the process under investigation for 2D and 3D models is performed.  相似文献   

19.
A two-dimensional gas-phase model of ignition of a flammable liquid by a single particle heated to a high temperature with consideration given to heat conduction, evaporation, diffusion, and convection of fuel vapor in an oxidizer medium was developed. Numerical simulations made it possible to determine the dependences of the ignition delay time for the liquid on the size and initial temperature of the particle. The minimum size and initial temperature of the particle at which ignition still occurs were estimated.  相似文献   

20.
This paper addresses the influence of fuel spray impact on fuel/air mixture for combustion in port-fuel injection engines. The experiments include time resolved measurements of surface temperature synchronized with PDA measurements of droplet dynamics at impact and were conducted to quantify the effects of interactions between successive injections on the mixture preparation for combustion in homogeneous charge compression ignition (HCCI) engines. Analysis shows that, during engine warm up, the heat transfer over the entire valve surface occurs within the vaporization-nucleate-boiling regime and the local instantaneous surface temperature correlates with the dynamics of droplets impacting at the same point. A functional relation is found for the heat transfer coefficient, which also describes other experiments reported in the literature. Similarity does not hold after the engine warms up because heat transfer and droplet vaporization at the surface are dominated by multiple interactions between droplets arisen from diverse heat transfer regimes. However, results evidence the existence of a critical surface temperature which sets a transition between overall heat transfer regimes dominated by local nucleate boiling at lower temperatures and by local intermittent transition regimes at higher temperatures. The heat transfer within the overall nucleate boiling regime is shown to be due to a thin film boiling mechanism leading to breakdown of the liquid-film at a nearly constant surface temperature, regardless of injection frequency or any other spray conditions. While at low frequencies this regime is not limited neither by the delivery of liquid to the surface, nor by the removal of vapour from the surface, at higher frequencies it is triggered by enhanced vaporization induced by piercing and mixing the liquid film. The results further evidence the important role of spray impingement for mixture preparation as required for HCCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号