首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the first molecular level investigation of chemical reactivity of a surface of an amorphous diffusion barrier film deposited on a Si(100)-2 x 1 single crystal. Vinyltrimethylsilane (VTMS) is chosen as a probe molecule because of its chemical properties and because of its role as a ligand in a common copper deposition precursor, hexafluoroacetylacetonato-copper-vinyltrimethylsilane, (hfac)Cu(VTMS). The surface chemistry of vinyltrimethylsilane on titanium carbonitride-covered Si(100)-2 x 1 has been investigated using multiple internal reflection Fourier transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES), thermal desorption mass spectrometry, and computational analysis. On a film with nominal surface stoichiometry TiC(x)N(y) (x approximately y approximately 1) preannealed to 800 K, VTMS adsorbs molecularly at cryogenic temperatures even at submonolayer coverages; the major pathway for its temperature-programmed evolution is desorption. Adsorption at room temperature leads to chemisorption via a double-bond attachment. A set of computational models was designed to investigate the possible adsorption sites for a VTMS molecule on a TiCN-covered Si(100)-2 x 1 surface. A comparison of the computational predictions for a variety of possible adsorption sites with the results of thermal desorption and infrared measurements suggests that approximately 90% of the adsorbed VTMS is chemisorbed along the Ti-C bond while approximately 10% is chemisorbed on a Ti corner atom, the minority site of the surface. The Ti-N bond is not participating in the chemisorption process.  相似文献   

2.
The room-temperature adsorption and thermal evolution of cis-dichloroethylene (DCE) and perchloroethylene (PCE) on Si(100)2 x 1 have been studied by X-ray photoelectron spectroscopy and temperature programmed desorption (TPD) mass spectrometry. Unlike ethylene that is found to adsorb on Si(100)2 x 1 through a [2+2] cycloaddition reaction, cis-DCE and PCE appear to dechlorinate upon adsorption on the 2 x 1 surface through an insertion reaction preserving the C=C bond. Our C 1s XPS spectra are consistent with the existence of mono-sigma-bonded and di-sigma bonded dechlorinated adstructures for both cis-DCE and PCE. The presence of the XPS C 1s feature at 283.9 eV, characteristic of the (=C<(Si)(Si)) component, supports the formation of a unique tetra-sigma-bonded C(2) dimer (i.e., by full dechlorination) for PCE, which is found to be stable to 800 K. In marked contrast to PCE for which no organic desorption fragments are observed, m/z 26 TPD features at 590 and 750 K have been observed for cis-DCE. These features could be attributed to the formation of acetylene resulting from Cl beta-elimination of 2-chlorovinyl adspecies and to direct desorption of vinylene, respectively. Further annealing the cis-DCE and PCE samples to above 800 K produces SiC and/or carbon clusters. The TPD data also show HCl evolution over 810-850 K for both cis-DCE and PCE, the latter of which also exhibits an additional SiCl(2) evolution above 850 K. The present work illustrates that the insertion mechanism could be quite common in the surface chemistry of chlorinated ethylenes on the 2 x 1 surface.  相似文献   

3.
Interactions between porous silicon (pSi) particles and probe molecules were evaluated to determine the effect of pSi and probe molecule chemistry on adsorption. Methylene blue, ethyl violet and orange G dyes were chosen for investigation as they possess distinct functionalities and charges. Several distinct pSi surface species were produced via thermal oxidation at 200-800 °C and their effect on adsorption investigated. The adsorption mechanisms were elucidated from equilibrium adsorption and desorption isotherms. Methylene blue adsorption was attributed to electrostatic attraction where a gradual increase in adsorption with oxidation temperature was observed. Significant methylene blue desorption was observed at pH 3, confirming adsorption occurs via electrostatic attraction. Ethyl violet demonstrated an increase in plateau adsorption capacity and affinity with increased oxidation temperatures and adsorption was initially attributed to electrostatic attraction, however desorption of ethyl violet was not observed, thus indicating potential chemisorption. Orange G exhibited high affinity adsorption for Si(y)SiH(x) terminated surfaces but no orange G desorption was detected, indicating a chemisorption adsorption mechanism. It has been successfully demonstrated that the surface modification of pSi enabled the manipulation of molecular interactions. By interacting probe molecules with similar functionalities to drug molecule with pSi, greater understanding of drug-pSi interactions can be ascertained which are of great importance. pSi surface chemistry can be tailored to enable control over molecular interactions and ultimately dictate loading, encapsulation and release behavior.  相似文献   

4.
 用高分辨电子能量损失谱(HREELS)和热脱附谱(TDS)研究了\r\n乙酸在SmOx/Rh(100)模型表面上的吸附与分解.结果表明:低温下\r\n吸附乙酸时,SmOx的加入明显促进了乙酸分子中O-H键的断裂,从而有\r\n利于乙酸根的形成;升高表面温度,SmOx的存在促进了乙酸根中C-C键\r\n的断裂,有利于乙酸根的进一步分解.120K时,乙酸在SmOx/Rh(100\r\n)上主要以乙酸根的形式存在.225K时,乙酸根即可发生以生成CO为主\r\n的脱羧反应.在417和477K观察到受表面脱羧反应控制的CO2和H2的脱附\r\n峰.对反应的机理进行了讨论.  相似文献   

5.
The adsorption and thermal decomposition of ketene on Si(l 11)-7 × 7 were investigated using various surface analysis techniques. When the surface was exposed to ketene at 120 K, two CO stretching modes at 220 and 273 meV appeared in HREELS, corresponding to two adsorbed ketene states. After the sample was annealed at ?250 K, the 273 and the 80 meV peaks vanished, indicating the disappearance of one of the adsorption states by partial desorption of the adsorbate. In a corresponding TPD measurement, a desorption peak for ketene species was noted at 220 K. Annealing the sample at 450 K caused the decomposition of the adsorbate, producing CHx and O adspecies. Further annealing of the surface at higher temperatures resulted in the breaking of the CH bond, the desorption of H and O species and the formation of Si carbide. The desorption of H at 800 K was confirmed by the appearance of the D2 (m/e = 4) TPD peak at that temperature when CD2CO was used instead of CH2CO.  相似文献   

6.
The concept of proton affinity on semiconductor surfaces has been explored through an investigation of the chemistry of amines on the Ge(100)-2 x 1, Si(100)-2 x 1, and C(100)-2 x 1 surfaces. Multiple internal reflection Fourier transform infrared (MIR-FTIR) spectroscopy, temperature programmed desorption (TPD), and density functional theory (DFT) calculations were used in the studies. We find that methylamine, dimethylamine, and trimethylamine undergo molecular chemisorption on the Ge(100)-2 x 1 surface through the formation of Ge-N dative bonds. In contrast, primary and secondary amines react on the Si(100)-2 x 1 surface via N-H dissociation. Since N-H dissociation of amines at semiconductor surfaces mimics a proton-transfer reaction, the difference in chemical reactivities of the Ge(100)-2 x 1 and Si(100)-2 x 1 surfaces toward N-H dissociation can be interpreted as a decrease of proton affinity down a group in the periodic table. The trend in proton affinities of the two surfaces is explained in terms of thermodynamics and kinetics. Solid-state effects on the C(100)-2 x 1 surface and the surface proton affinity concept are discussed based on our theoretical predictions.  相似文献   

7.
The surface chemistry of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione (hfacH), a hydrogenated form of the most common ligand in metal and metal oxide deposition, on Si(100)-2x1 has been investigated using multiple internal reflection Fourier transform infrared spectroscopy (MIR-FTIR), Auger electron spectroscopy (AES), thermal desorption mass spectrometry, and computational analysis. The main goal of these studies was to understand if hfacH is a source of fluorine, carbon, and oxygen contamination for a variety of deposition processes where the hfac ligand is involved. In its molecular form, hfacH may potentially have up to 10 isomers including two ketonic and eight enolic forms. One of the enolic forms is shown to be the most stable upon adsorption on a clean Si(100)-2x1 surface at submonolayer coverages at cryogenic temperatures. Even though only the enolic form is present at cryogenic temperatures, at room temperature any of these isomers can exist and all the possibilities of their interaction with the Si(100)-2x1 surface, including several [2 + 2] and [2 + 4] addition pathways as well as O-H dissociation, should be considered. Despite such an array of possibilities, the room-temperature adsorption is governed by the thermodynamic stability of the final addition products between the hfacH and silicon surface. These adducts are stable at room temperature and decompose upon surface annealing.  相似文献   

8.
The adsorption and reaction of methanol (CH(3)OH) on stoichiometric (TiO(2)-terminated) and reduced SrTiO(3)(100) surfaces have been investigated using temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and first-principles density-functional calculations. Methanol adsorbs mostly nondissociatively on the stoichiometric SrTiO(3)(100) surface that contains predominately Ti(4+) cations. Desorption of a monolayer methanol from the stoichiometric surface is observed at approximately 250 K, whereas desorption of a multilayer methanol is found to occur at approximately 140 K. Theoretical calculations predict weak adsorption of methanol on TiO(2)-terminated SrTiO(3)(100) surfaces, in agreement with the experimental results. However, the reduced SrTiO(3)(100) surface containing Ti(3+) cations exhibits higher reactivity toward adsorbed methanol, and H(2), CH(4), and CO are the major decomposition products. The surface defects on the reduced SrTiO(3)(100) surface are partially reoxidized upon saturation exposure of CH(3)OH onto this surface at 300 K.  相似文献   

9.
This paper will present the computational and experimental infrared studies of the reactions of nitrobenzene on a Si(100) surface, a prototypical model reaction for understanding the behavior of bifunctional molecules on semiconductor surfaces. The initial reaction of nitrobenzene with the Si(100)-2 x 1 occurs via 1,3-dipolar cycloaddition of the nitro group to the silicon surface dimer. Computational exploration of the initial adsorption configurations suggests that two stable structures can be formed: one with the phenyl ring essentially perpendicular to the surface; the other one with the tilt angle of approximately 113 degrees with respect to the surface normal. The barrier for converting the latter into the former, more stable by approximately 13 kJ/mol, is 19.1 kJ/mol. Further thermal reactions are analyzed, and the reaction pathways are compared for the computational models with fixed vs relaxed subsurface silicon atoms. While all the surface species resulting from nitrobenzene transformations on the Si(100)-2 x 1 surface studied here are thermodynamically stable, most of the reaction pathways can be ruled out on the basis of the analysis of the transition states leading to these species and on the comparison of predicted and measured vibrational spectra. As a result, the exact adsorption configurations can be pinpointed.  相似文献   

10.
To explore the role of competing forward and reversed chain reactions in the growth of a one-dimensional (1D) molecular line on the Si(100)-(2 x 1)-H surface, controlled experiments were performed with various alkene molecules by scanning tunneling microscopy (STM) at various temperatures. It was observed that the end dangling bond (DB) of a styrene line, fabricated by a chain reaction on the Si(100)-(2 x 1)-H surface at 300 K, initiated a reverse chain reaction at 400 K, leading to the complete disappearance of the styrene line with zero-order desorption kinetics (rate constant k = 1.17 x 10-2 s-1 at 400 K). In the case of 2,4-dimethylstyrene, the reversed chain reaction was observed even at 300 K. These results suggest that the appearance of a molecular line in an STM image is determined by the rates of competing forward and reversed chain reactions at a given temperature. As predicted, 1D lines formed by the DB-initiated chain reaction of 1-hexene and 1-heptene on Si(100)-(2 x 1)-H were observed at 180 K because of the reduced desorption rate, despite the fact that those molecules showed no line growth at 300 K. These results indicate that the scope of forming 1D molecular lines on the Si(100)-(2 x 1)-H surface with various alkenes is much wider than anticipated in previous studies.  相似文献   

11.
The nitridation of Si(100) by ammonia and the subsequent oxidation of the nitrided surface by both gaseous atomic and molecular oxygen was investigated under ultrahigh vacuum (UHV) conditions using X-ray photoelectron spectroscopy (XPS). Nitridation of Si(100) by the thermal decomposition of NH3 results in the formation of a subsurface nitride and a decrease in the concentration of surface dangling bond sites. On the basis of changes in the N1s spectra obtained after NH3 adsorption and decomposition, we estimate that the nitride resides about four to five layers below the vacuum-solid interface and that the concentration of surface dangling bonds after nitridation is only 59% of its value on Si(100)-(2 x 1). Oxidation of the nitrided surface is found to produce an oxide phase that remains in the outer layers of the solid and interacts only weakly with the underlying nitride for oxygen coverages up to 2.5 ML. Slight changes in the N1s spectra observed after oxidizing at 300 K are suggested to arise primarily from the introduction of strain within the nitride, and by the formation of a small amount of Si2=N-O species near the nitride-oxide interface. The nitrogen bonding environment changes negligibly after oxidizing at 800 K, which is indicative of greater phase separation at elevated surface temperature. Nitridation is also found to significantly reduce the reactivity of the Si(100) surface toward both atomic and molecular oxygen. A comparison of the oxygen uptake on the clean and nitrided surfaces shows quantitatively that the decrease in dangling bond concentration is responsible for the reduced activity of the nitrided surface toward oxidation, and therefore that dangling bonds are the initial adsorption site for both gaseous oxygen atoms and molecules. Increasing the surface temperature is found to promote the uptake of oxygen when O2 is used as the oxidant, but brings about only a small enhancement in the uptake of gaseous O-atoms. The different effects of surface temperature on the uptake of O versus O2 are interpreted in terms of the efficiency at which dangling bond pairs are regenerated on the surface at elevated temperature and the different site requirements for the adsorption of O and O2.  相似文献   

12.
The room-temperature (RT) adsorption and surface reactions of styrene on Si(100)2x1 have been investigated by thermal desorption spectrometry, low-energy electron diffraction, and Auger electron spectroscopy. Styrene is found to adsorb on Si(100)2x1 at a saturation coverage of 0.5 monolayer, which appears to have little effect on the 2x1 reconstructed surface. The chemisorption of styrene on the 2x1 surface primarily involves bonding through the vinyl group, with less than 15% of the surface moiety involved in bonding through the phenyl group. Except for the 2x1 surface where molecular desorption is also observed, the adsorbed styrene is found to undergo, upon annealing on the 2x1, sputtered and oxidized Si(100) surfaces, different thermally induced processes, including hydrogen abstraction, fragmentation, and/or condensation oligomerization. Condensation oligomerization of styrene has also been observed on Si(100)2x1 upon irradiation by low-energy electrons. In addition, large postexposure of atomic hydrogen to the chemisorbed styrene leads to Si-C bond cleavage and the formation of phenylethyl adspecies. Hydrogen therefore plays a decisive role in stabilizing and manipulating the processes of different surface reactions by facilitating different surface structures of Si.  相似文献   

13.
The interaction of methacrylic acid and methyl methacrylate with Si(111)-7 x 7 has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and X-ray photoelectron spectroscopy (XPS). While methacrylic acid chemisorbs dissociatively through O-H bond cleavage, methyl methacrylate is covalently attached to the silicon surface via a [4+2] cycloaddition. The different reaction pathways of these two compounds on Si(111)-7 x 7 demonstrate that the substitution groups play an important role in determining the reaction channels for multifunctional molecules, leading to the desired flexibility in the organic modification of silicon surfaces.  相似文献   

14.
Stationary and non-stationary etching of Si(100) surfaces by hydrogen were studied between 200 K and 800 K using direct product detection and thermal desorption spectroscopy. Silane was the only etch product observed. The rates of silane SiDnH4−n isotopes measured during etching D-saturated Si(100) surfaces with gaseous H illustrate that the etch reaction proceeds between surface silyl and incoming H in a direct (Eley–Rideal or hot-atom) reaction step: H(g)+SiD3(ad)→SiD3H(g). Non-stationary etching via silane desorption occurs through disproportionation between surface dihydride and silyl groups, SiH2(ad)+SiH3(ad)→SiH4(g).  相似文献   

15.
One of the fundamental points of interest on the Si(100) surface is how the spatial localization of electron density on the buckled silicon dimer controls the site-specific reaction toward different Lewis acid and Lewis base molecules. We have investigated the adsorption of trimethylamine (TMA) on Si(100)c(4x2) using scanning tunneling microscopy (STM) at 80 K. The adsorbed TMA appears as a triangle-shaped bright protrusion in the occupied-state STM image. The triangle-shaped protrusion is ascribed to three methyl groups in the adsorbed TMA. The center of the protrusion is located on the down atom site, which indicates that the adsorption of TMA occurs only on the down dimer atom. Thus, TMA adsorption on Si(100)c(4x2) is found to be purely site-specific on the down dimer atom and can be categorized in Lewis acid-base reaction.  相似文献   

16.
The room-temperature (RT) adsorption and thermal evolution of 1,1-dichloroethylene (1,1-C2H2Cl2 or iso-DCE) and monochloroethylene (C2H3Cl or MCE) on Si(111)7 x 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm(-1) suggests that upon adsorption iso-DCE dissociates via C-Cl bond breakage on the 7x7 surface to form mono-sigma-bonded 1-chlorovinyl (ClC=CH2) and/or di-sigma-bonded vinylidene (: C=CH(2)) adspecies. Upon annealing to 450 K, the 1-chlorovinyl adspecies undergoes further dechlorination to vinylidene adspecies, which may be converted to di-sigma-bonded vinylene (HC=CH) before dehydrogenating to hydrocarbon fragments above 580 K. TDS studies reveal both molecular desorption of iso-DCE near 350 K and C2H2 fragments near 700 K, and the presence of the latter confirms the existence of the di-sigma-bonded vinylene adspecies. Like the other chlorinated ethylene homologues, iso-DCE also exhibits TDS features of an etching product SiCl2 at 800-950 K and a dehydrochlorination product HCl at 700-900 K. Unlike iso-DCE, MCE is found to adsorb on the 7 x 7 surface predominantly through a [2 + 2] cycloaddition mechanism at RT, with similar di-sigma bonding structure as ethylene. The thermal evolution of MCE however follows that of iso-DCE, with the formation of vinylene above 580 K. Despite the lack of TDS feature attributable to HCl, weaker SiCl2 TDS feature could be observed at 800-950 K. For both iso-DCE and MCE, strong recombinative desorption of H2 is observed near 780 K. The differences in the Cl content among iso-DCE, MCE, and ethylene therefore play a key role in the RT chemisorption and thermally driven chemical processes on Si(111)7 x 7.  相似文献   

17.
 利用程序升温反应谱、X射线光电子能谱和高分辨电子能量损失谱研究了NO在清洁和预吸附氧的Pt(110)表面的吸附和分解. 在清洁的Pt(110)表面,室温下低覆盖度时NO以桥式吸附为主,高覆盖度时NO以线式吸附为主. 加热过程中部分NO(主要是桥式吸附物种)分解,生成N2和N2O. 室温下O2在Pt(110)表面发生解离吸附. Pt(110)表面预吸附氧会抑制桥式吸附NO的生成,并导致其脱附温度降低40 K. 降低脱附温度有利于桥式吸附NO的分子脱附,从而抑制分解反应. 这些结果从表面化学的角度合理地解释了铂催化剂在富氧条件下对NO分解能力的降低.  相似文献   

18.
The adsorption and reaction of methanethiol (CH3SH) and dimethyl disulfide (CH3SSCH3) on Mo(110)-(1 x 6)-O have been studied using temperature-programmed reaction spectroscopy and reflection-absorption infrared spectroscopy over the temperature range of 110-550 K. The S-H bond is broken upon adsorption to form adsorbed OH, water, and methyl thiolate (CH3S-) at low temperature. Water is evolved at 210 and 310 K via molecular desorption and disproportionation of OH, respectively. Some hydroxyl remains on the surface up to 350 K. Methyl thiolate is also formed from CH3SSCH3 on Mo(110)-(1 x 6)-O. Methyl thiolate undergoes C-S cleavage above 300 K, yielding methane and methyl radicals. There is also a minor amount of nonselective decomposition leading to the formation of carbon and hydrogen. Methane production is promoted by adsorbed hydroxyl. As the hydroxyl coverage increases, the yield of methyl radicals relative to methane diminishes. Accordingly, there is more methane produced from methanethiol reaction than from dimethyl disulfide, since S-H dissociation in CH3SH produces OH. The maximum coverage of the thiolate is approximately 0.5 monolayers, based on the amount of sulfur remaining after reaction measured by Auger electron spectroscopy. In contrast to cyclopropylmethanethiol (c-C3H5CH2SH), for which alkyl transfer from sulfur to oxygen is observed, there is no evidence for transfer of the methyl group of methyl thiolate to oxygen on the surface. Specifically, there is no evidence for methoxy (CH3O-) in infrared spectroscopy or temperature-programmed reaction experiments.  相似文献   

19.
The bonding of the trimethylamine (TMA) and dimethylamine (DMA) with crystalline silicon surfaces has been investigated using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, and density-functional computational methods. XPS spectra show that TMA forms stable dative-bonded adducts on both Si(001) and Si(111) surfaces that are characterized by very high N(1s) binding energies of 402.2 eV on Si(001) and 402.4 eV on Si(111). The highly ionic nature of these adducts is further evidenced by comparison with other charge-transfer complexes and through computational chemistry studies. The ability to form these highly ionic charge-transfer complexes between TMA and silicon surfaces stems from the ability to delocalize the donated electron density between different types of chemically distinct atoms within the surface unit cells. Corresponding studies of DMA on Si(001) show only dissociative adsorption via cleavage of the N-H bond. These results show that the unique geometric structures present on silicon surfaces permit silicon atoms to act as excellent electron acceptors.  相似文献   

20.
The adsorption of water on V2O3(0001) surfaces has been investigated by thermal desorption spectroscopy, high-resolution electron energy loss spectroscopy, and X-ray photoelectron spectroscopy with use of synchrotron radiation. The V2O3(0001) surfaces have been generated in epitaxial thin film form on a Rh(111) substrate with three different surface terminations according to the particular preparation conditions. The stable surface in thermodynamic equilibrium with the bulk is formed by a vanadyl (VO) (1x1) surface layer, but an oxygen-rich (radical3xradical3)R30 degrees reconstruction can be prepared under a higher chemical potential of oxygen (microO), whereas a V-terminated surface consisting of a vanadium surface layer requires a low microO, which can be achieved experimentally by the deposition of V atoms onto the (1x1) VO surface. The latter two surfaces have been used to model, in a controlled way, oxygen and vanadium containing defect centres on V2O3. On the (1x1) V=O and (radical3xradical3)R30 degrees surfaces, which expose only oxygen surface sites, the experimental results indicate consistently that the molecular adsorption of water provides the predominant adsorption channel. In contrast, on the V-terminated (1/radical3x1/radical3)R30 degrees surface the dissociation of water and the formation of surface hydroxyl species at 100 K is readily observed. Besides the dissociative adsorption a molecular adsorption channel exists also on the V-terminated V2O3(0001) surface, so that the water monolayer consists of both OH and molecular H2O species. The V surface layer on V2O3 is very reactive and is reoxidised by adsorbed water at 250 K, yielding surface vanadyl species. The results of this study indicate that V surface centres are necessary for the dissociation of water on V2O3 surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号