首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Low-temperature ozonation of cumene (1a) in acetone, methyl acetate, and tert-butyl methyl ether at -70 degrees C produced the corresponding hydrotrioxide, C(6)H(5)C(CH(3))(2)OOOH (2a), along with hydrogen trioxide, HOOOH. Ozonation of triphenylmethane (1b), however, produced only triphenylmethyl hydrotrioxide, (C(6)H(5))(3)COOOH (2b). These observations, together with the previously reported experimental evidence, seem to support the "radical" mechanism for the first step of the ozonation of the C-H bonds in hydrocarbons, i.e., the formation of the caged radical pair (R(**)OOOH), which allows both (a) collapse of the radical pair to ROOOH and (b) the abstraction of the hydrogen atom from alkyl radical R(*) by HOOO(*) to form HOOOH. The B3LYP/6-311++G(d,p) (ZPE) calculations revealed that HOOO radicals are considerably stabilized by forming intermolecularly hydrogen-bonded complexes with acetone (BE = 8.55 kcal/mol) and dimethyl ether (7.04 kcal/mol). This type of interaction appears to be crucial for the relatively fast reactions (and the formation of the polyoxides in relatively high yields) in these solvents, as compared to the ozonations run in nonbasic solvents. However, HOOO radicals appear to be not stable enough to abstract hydrogen atoms outside the solvent cage, as indicated by the absence of HOOOH among the products in the ozonolysis of triphenylmethane. The decomposition of alkyl hydrotrioxides 2a and 2b involves a homolytic cleavage of the RO-OOH bond with subsequent "in cage" reactions of the corresponding radicals, while the decomposition of HOOOH is most likely predominantly a "pericyclic" process involving one or more molecules of water acting as a bifunctional catalyst to produce water and singlet oxygen (Delta(1)O(2)).  相似文献   

2.
The HOOO(-) anion (1) can adopt a triplet state (T-1) or a singlet state (S-1), where the former is 9.8 kcal/mol (DeltaH(298) = 10.3 kcal/mol) more stable than the latter. S-1 possesses a strong O-OOH bond with some double bond character and a weakly covalent OO-OH bond (1.80 A) according to CCSD(T)/6-311++G(3df,3pd) calculations (the longest O-O bond ever found for a peroxide). In aqueous solution, S-1 adopts a geometry closely related to that of HOOOH (OO(O), 1.388 A; (O)OO(H), 1.509 A; tau(OOOH), 78.3 degrees ), justifying that S-1 is considered the anion of HOOOH. Dissociation into HO anion and O(2)((1)Delta(g)) requires 15.4 (DeltaH(298) = 14.3; DeltaG(298) = 8.9) kcal/mol. Structure T-1 corresponds to a van der Waals complex between HO anion and O(2)((3)Sigma(g)(-)) having a binding energy of 2.7 (DeltaH(298) = 2.1) kcal/mol. Modes of generating S-1 in aqueous solution are discussed, and it is shown that S-1 represents an important intermediate in ozonation reactions.  相似文献   

3.
Computational studies at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels are performed to explore the changes in reaction barrier height for the gas phase hydrolysis of SO(3) to form H(2)SO(4) in the presence of a single formic acid (FA) molecule. For comparison, we have also performed calculations for the reference reaction involving water assisted hydrolysis of SO(3) at the same level. Our results show that the FA assisted hydrolysis of SO(3) to form H(2)SO(4) is effectively a barrierless process. The barrier heights for the isomerization of the SO(3)···H(2)O···FA prereactive collision complex, which is the rate limiting step in the FA assisted hydrolysis, are found to be respectively 0.59 and 0.08 kcal/mol at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(3df,3pd) levels. This is substantially lower than the ~7 kcal/mol barrier for the corresponding step in the hydrolysis of SO(3) by two water molecules--which is currently the accepted mechanism for atmospheric sulfuric acid production. Simple kinetic analysis of the relative rates suggests that the reduction in barrier height facilitated by FA, combined with the greater stability of the prereactive SO(3)···H(2)O···FA collision complex compared to SO(3)···H(2)O···H(2)O and the rather plentiful atmospheric abundance of FA, makes the formic acid mediated hydrolysis reaction a potentially important pathway for atmospheric sulfuric acid production.  相似文献   

4.
Density functional theory has been used to study the mechanism of the decomposition of peroxyacetyl nitrate (CH3C(O)OONO2) in hydrogen fluoride clusters containing one to three hydrogen fluoride molecules at the B3LYP/6‐311++G(d,p) and B3LYP/6‐311+G(3df,3pd) levels. The calculations clarify some of the uncertainties in the mechanism of PAN decomposition in the gas phase. The energy barrier decreases from 30.5 kcal mol?1 (single hydrogen fluoride) to essentially 18.5 kcal mol?1 when catalyzed by three hydrogen fluoride molecules. As the size of the hydrogen fluoride cluster is increased, PAN shows increasing ionization along the O? N bond, consistent with the proposed predissociation in which the electrophilicity of the nitrogen atom is enhanced. This reaction is found to proceed through an attack of a fluorine to the PAN nitrogen in concert with a proton transfer to a PAN oxygen. On the basis of our calculations, an alternative reaction mechanism for the decomposition of PAN is proposed. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
张金生  孟庆喜  李明 《化学学报》2005,63(8):686-692
用量子化学DFT, MP2, G3和G3MP2方法对FC(O)O自由基与NO2的反应机理进行了理论研究. 优化了反应势能面上各驻点的几何结构, 通过内禀反应坐标(IRC)计算和振动分析, 确认了反应中的过渡态, 并用过渡态理论(TST)计算了相关反应的速率常数.  相似文献   

6.
The molecular structure of fluoromalononitrile was studied by means of gas-phase electron diffraction and quantum mechanical methods using HF/6-31G(d), MP2/6-311++G(2df,2pd) and DFT/B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-311++G(2df,2pd) and B3PW91/6-311++G(2df,2pd). The r(g) and angle(alpha) structural parameters we obtained from the present analysis are: CC=1.487(5) A, CN=1.157(3) A, CF=1.386(5) A, CH=1.096 A (ass.), angleCCC=106.7(1.0) degrees , angleCCF=108.0(0.7) degrees , angleCCN=177.6(2.0) degrees . Uncertainties in parenthesis are 3sigma.  相似文献   

7.
X-Cl...H-Y interactions are analyzed by applying ab initio methods as well as the Bader theory. All calculations were performed using Pople's basis sets (6-311++G(2df,2pd) and 6-311++G(3df,3pd)) as well as the Dunning-type bases (aug-cc-pVDZ and aug-cc-pVTZ) within the MP2 method. For the complexes analyzed here, X-Cl and H-Y may be treated as a Lewis acid and a Lewis base, respectively. The Cl...H interactions are rather weak or at most moderate since, for the strongest interaction of the F3...HLi complex, the binding energy calculated at the MP2/6-311++G(3df,3pd) level of approximation amounts to -3.4 kcal/mol, and the H...Cl distance is equal to 2.65 A, less than the corresponding sum of van der Waals radii. These interactions may be classified as halogen-hydride interactions. However, some of the complexes analyzed, especially F3SiCl...HBeF and F3SiCl...HBeF, are very weakly bound, probably by typical van der Waals interactions.  相似文献   

8.
Dihydrogen trioxide (HOOOH) is formed nearly quantitatively in the low-temperature (-70 degrees C) methyltrioxorhenium(VII) (MTO)-catalyzed transformation of silyl hydrotrioxides (R3SiOOOH), and some acetal hydrotrioxides, in various solvents, as confirmed by 1H, and 17O NMR spectroscopy. The calculated energetics (B3LYP) for the catalytic cycle, using H3SiOOOH as a model system, is consistent with the experimentally observed activation energy (9.5 +/- 2.0 kcal/mol) and a small kinetic solvent isotope effect (kH2O/kD2O = 1.1 +/- 0.1), indicating an initial concerted reaction between the silyl hydrotrioxide and MTO in the rate-determining step. With the addition of water in the next step, the intermediate undergoes a sigma-bond metathesis reaction to break the Re-OOOH bond and form HOOOH, together with the second dihydroxy intermediate. The final step in the catalytic cycle involves a second, catalytic water that lowers the barrier to form H3SiOH and MTO.  相似文献   

9.
Using geometrical optimization and DFT method at the B3LYP/6-311++G (3df,3pd) level, four equilibrium geometries and one transition state of GeH2LiCl were identified, and the structures at the MP2/6-311++G(3df,3pd) level were calculated simultaneously. We also studied the solvent effects on the structures of Germylenoid GeH2LiCl at the B3LYP/6-311++G (3df,3pd) level. The two more stable forms are suggested to be the p-complex and three-membered ring. The vibrational frequencies and infrared intensities were computed at the B3LYP/6-311++G (3df,3pd) level.  相似文献   

10.
In this study, the biologically active configurations composed of Thiazolidinedione–Uracil (TU) and Rhodanine–Uracil (RU) have been fully investigated from the energetic and structural points of view, employing B3LYP and M062X functionals in combination with the different basis sets. Dispersion corrections to the interaction energy using M062X–GD3 and double hybrid density functionals (B2PLYP–GD2, B2PLYP–GD3 and mPW2PLYP–GD2) are also taking into account. The basis set superposition error-corrected interaction energy for hydrogen bonded configurations ranges from ??5.27 to ??13.53 and ??5.25 to ??12.93 kcal/mol for TU and RU complexes respectively as calculated at M062X/6–311++G(df,pd) level. The charge transfer process within all of the TU and RU configurations were analyzed using Natural Bond Orbital (NBO) calculations. The nature of the interactions is analyzed with NBO and Atoms in Molecules (AIM) analysis at M062X/6–311++G(df,pd) and energy decomposition analysis at BP86–D3/TZ2P(ZORA)//M062X/6–311++G(df,pd) level of theory. The results confirm that the nature of the interactions is nearly electrostatic, with a contribution of about 51–56% of the total interaction energy. The orbital interactions (ΔEorb) for the considered TU and RU complexes have a contribution of about 24–38% of the total interaction energy. Based on the AIM and NBO results, the interactions were defined as electrostatic H-bonds with partially covalent character. In addition, correlation between interaction energies and vibrational frequency changes was investigated.  相似文献   

11.
The proton affinity of a molecule in the gas phase is a fundamental measure of its basicity and is the factor controlling the course of many ion-molecule reactions. In this article, ab initio molecular orbital theory at the MP4/6-311 ++ G(3df, 3pd) level of theory is demonstrated to predict proton affinities (PA's) for small neutral and anionic bases to within 2 kcal mol-1. Furthermore, the errors are random, indicating that there are likely no systematic errors in either the experimental or theoretical PA's. Also, this level of theory is used to calibrate less sophisticated theoretical models which are suitable for larger molecules; the MP4/6-311 ++ G(2d, 2p) and MP2/6-311 ++ G(d, p) theoretical models should be particularly useful. A procedure for predicting the vibrational frequencies for anion is proposed and applied to CH3-, NH2-, OH-, and CN-.  相似文献   

12.
Ar3H+中多体势能拆分的从头计算分析   总被引:1,自引:0,他引:1  
使用从头算的方法计算了Ar3H+的稳定构型及红外振动基频,并与Ar2H+的稳定结构及红外振动频率作了对比,讨论了二者之间的联系与差别.对Ar3H+一个特殊构型下的势能线作了扫描,在此势能线下将Ar3H+的四体势能拆解为两体,半三体及三体势能的加和,初步探讨了高阶势能分解为低阶势能的最佳途径.  相似文献   

13.
The cheletropic decompositions of 1-nitrosoaziridine (1), 1-nitroso-Delta(3)-pyrroline (2), 7-nitroso-7-azabicyclo[2.2. 1]hepta-2,5-diene (3), and 6-nitroso-6-azabicyclo[2.1.1]hexa-4-ene (4) have been studied theoretically using high level ab initio computations. Activation parameters of the decomposition of nitrosoaziridine 1 were obtained experimentally in heptane (DeltaH()(298) = 18.6 kcal mol(-)(1), DeltaS()(298) = -7.6 cal mol(-)(1) K(-)(1)) and methanol (20.3 kcal mol(-)(1), 0.3 cal mol(-)(1) K(-)(1)). Among employed theoretical methods (B3LYP, MP2, CCD, CCSD(T)//CCD), the B3LYP method in conjunction with 6-31+G, 6-311+G, and 6-311++G(3df,2pd) basis sets gives the best agreement with experimental data. It was found that typical N-nitrosoheterocycles 2-4 which have high N-N bond rotation barriers (>16 kcal mol(-)(1)) extrude nitrous oxide via a highly asynchronous transition state with a planar ring nitrogen atom. Nitrosoaziridine 1, with a low rotation barrier (<9 kcal mol(-)(1)) represents a special case. This compound can eliminate N(2)O via a low energy linear synperiplanar transition state (DeltaH()(298) = 20.6 kcal mol(-)(1), DeltaS()(298) = 2.5 cal mol(-)(1) K(-)(1)). Two higher energy transition states are also available. The B3LYP activation barriers of the cheletropic fragmentation of nitrosoheterocycles 2-4 decrease in the series: 2 (58 kcal mol(-)(1)) > 3 (18 kcal mol(-)(1)) > 4 (12) kcal mol(-)(1). The relative strain energies increase in the same order: 2 (0 kcal mol(-)(1)) < 3 (39 kcal mol(-)(1)) < 4 (52 kcal mol(-)(1)). Comparison of the relative energies of 2-4 and their transition states on a common scale where the energy of nitrosopyrroline 2 is assumed as reference indicates that the thermal stability of the cyclic nitrosoamines toward cheletropic decomposition is almost entirely determined by the ring strain.  相似文献   

14.
The microwave spectrum of 3-butyne-1-thiol has been studied by means of Stark-modulation microwave spectroscopy and quantum-chemical calculations employing the B3LYP/6-311++G(3df,2pd), MP2/aug-cc-pVTZ, MP2/6-311++G(3df,2pd), and G3 methods. Rotational transitions attributable to two conformers of this molecule were assigned. One of these conformers possesses an antiperiplanar arrangement of the atoms S-C1-C2-C3, while the other is synclinal and stabilized by the formation of an intramolecular hydrogen bond between the H-atom of the thiol group and the pi-electrons of the C[triple bond]C triple bond. The energy difference between these conformers was estimated to be 1.7(4) kJ mol(-1) by relative intensity measurements, with the hydrogen-bonded conformer being lower in energy. The spectra of five vibrationally excited states of the synclinal conformer were observed, and an assignment of these states to particular vibrational modes was made with the aid of a density functional theory (DFT) calculation of the vibrational frequencies at the B3LYP/6-311++G(3df,2pd) level of theory.  相似文献   

15.
Low-temperature ozonation of isopropyl alcohol (1a) and isopropyl methyl ether (1b) in [D6]acetone, methyl acetate, and tert-butyl methyl ether at -78 degrees C produced the corresponding hydrotrioxides, Me2C(OH)(OOOH) (2a) and Me2C(OMe)(OOOH) (2b), along with hydrogen trioxide (HOOOH). All the polyoxides investigated were characterized for the first time by 17O NMR spectroscopy of highly 17O-enriched species. The assignment was confirmed by GIAO/MP2/6-31++G* calculations of 17O NMR chemical shifts, which were in excellent agreement with the experimental values. Ab initio density functional (DFT) calculations at the B3LYP/ 6-31G*+ZPE level have clarified the transition structure (TS1, deltaE = 7.4 and 10.6 kcalmol(-1), relative to isolated reactants and the complex 1a-ozone, respectively) for the ozonation of 1a: this, together with the formation of HOOOH and some other products, indicates the involvement of radical intermediates (R*, *OOOH) in the reaction. The activation parameters for the decomposition of the hydrotrioxides 2a and 2b (Ea, = 23.5+/-1.5 kcalmol(-1), logA = 16+/-1.8) were typical for a homolytic process in which cleavage of the ROOOH molecule occurs to yield a radical pair [RO* *OOH] and represents the lowest available energy pathway. Significantly the lower activation parameters for the decomposition of HOOOH (Ea = 16.5+/-2.2 kcalmol(-1), logA = 9.5+/-2.0) relative to those expected for the homolytic scission of the HO-OOH bond [bond dissociation energy (BDE) = 29.8 kcalmol(-1), CCSD(T)/6-311++G**] are in accord with the proposal that water behaves as a bifunctional catalyst and therefore participates in a "polar" (non-radical) decomposition process of this polyoxide. A relatively large acceleration of the decomposition of the hydrotrioxide 2a in [D6]acetone, accompanied by a significant lowering of the activation energies, was observed in the presence of a large excess of water. Thus intramolecular 1,3-proton transfer probably also involves the participation of water and is similar to the mechanism proposed for the decomposition of HOOOH. This hypothesis was further substantiated by the B3LYP/6-31++ G*+ZPE calculations for the participation of water in the decomposition of CH3OOOH, which revealed two stationary points on the potential energy surface corresponding to a CH3OOOH-HOH complex and a six-membered cyclic transition state TS2. The energy barriers were comparable with those calculated for HOOOH, that is, deltaE = 15.0 and 21.5 kcalmol(-1) relative to isolated reactants and the CH3OOOH-HOH complex, respectively.  相似文献   

16.
There are two values, -26.0 and -27.7 kcal mol(-1), that are routinely reported in literature evaluations for the standard enthalpy of formation, Delta(f) H(o)(298), of formaldehyde (CH(2)=O), where error limits are less than the difference in values. In this study, we summarize the reported literature for formaldehyde enthalpy values based on evaluated measurements and on computational studies. Using experimental reaction enthalpies for a series of reactions involving formaldehyde, in conjunction with known enthalpies of formation, its enthalpy is determined to be -26.05+/-0.42 kcal mol(-1), which we believe is the most accurate enthalpy currently available. For the same reaction series, the reaction enthalpies are evaluated using six computational methods: CBS-Q, CBS-Q//B3, CBS-APNO, G2, G3, and G3B3 yield Delta(f) H(o)(298)=-25.90+/-1.17 kcal mol(-1), which is in good agreement to our experimentally derived result. Furthermore, the computational chemistry methods G3, G3MP2B3, CCSD/6-311+G(2df,p)//B3LYP/6-31G(d), CCSD(T)/6-311+G(2df,p)//B3LYP/6-31G(d), and CBS-APNO in conjunction with isodesmic and homodesmic reactions are used to determine Delta(f) H(o)(298). Results from a series of five work reactions at the higher levels of calculation are -26.30+/-0.39 kcal mol(-1) with G3, -26.45+/-0.38 kcal mol(-1) with G3MP2B3, -26.09+/-0.37 kcal mol(-1) with CBS-APNO, -26.19+/-0.48 kcal mol(-1) with CCSD, and -26.16+/-0.58 kcal mol(-1) with CCSD(T). Results from heat of atomization calculations using seven accurate ab initio methods yields an enthalpy value of -26.82+/-0.99 kcal mol(-1). The results using isodesmic reactions are found to give enthalpies more accurate than both other computational approaches and are of similar accuracy to atomization enthalpy calculations derived from computationally intensive W1 and CBS-APNO methods. Overall, our most accurate calculations provide an enthalpy of formation in the range of -26.2 to -26.7 kcal mol(-1), which is within computational error of the suggested experimental value. The relative merits of each of the three computational methods are discussed and depend upon the accuracy of experimental enthalpies of formation required in the calculations and the importance of systematic computational errors in the work reaction. Our results also calculate Delta(f) H(o)(298) for the formyl anion (HCO(-)) as 1.28+/-0.43 kcal mol(-1).  相似文献   

17.
The potential energy surface (PES) for the HOBr.H(2)O complex has been investigated using second- and fourth-order M?ller-Plesset perturbation theory (MP2, MP4) and coupled cluster theory with single and doubles excitations (CCSD), and a perturbative approximation of triple excitations (CCSD-T), correlated ab initio levels of theory employing basis sets of triple zeta quality with polarization and diffuse functions up to the 6-311++G(3dp,3df ) standard Pople's basis set. Six stationary points being three minima, two first-order transition state (TS) structures and one second-order TS were located on the PES. The global minimum syn and the anti equilibrium structure are virtually degenerated [DeltaE(ele-nuc) approximately 0.3 kcal mol(-1), CCSD-T/6-311++G(3df,3pd) value], with the third minima being approximately 4 kcal mol(-1) away. IRC analysis was performed to confirm the correct connectivity of the two first-order TS structures. The CCSD-T/6-311++G(3df,3pd)//MP2/6-311G(d,p) barrier for the syn<-->anti interconversion is 0.3 kcal mol(-1), indicating that a mixture of the syn and anti forms of the HOBr.H(2)O complex is likely to exist.  相似文献   

18.
Low-temperature (-78 degrees C) ozonation of 1,2-diphenylhydrazine in various oxygen bases as solvents (acetone-d(6), methyl acetate, tert-butyl methyl ether) produced hydrogen trioxide (HOOOH), 1,2-diphenyldiazene, 1,2-diphenyldiazene-N-oxide, and hydrogen peroxide. Ozonation of 1,2-dimethylhydrazine produced besides HOOOH, 1,2-dimethyldiazene, 1,2-dimethyldiazene-N-oxide and hydrogen peroxide, also formic acid and nitromethane. Kinetic and activation parameters for the decomposition of the HOOOH produced in this way, and identified by (1)H, (2)H, and (17)O NMR spectroscopy, are in agreement with our previous proposal that water participates in this reaction as a bifunctional catalyst in a polar decomposition process to produce water and singlet oxygen (O(2), (1)delta(g)). The possibility that hydrogen peroxide is, besides water, also involved in the decomposition of hydrogen trioxide is also considered. The half-life of HOOOH at room temperature (20 degrees C) is 16 +/- 1 min in all solvents investigated. Using a variety of DFT methods (restricted, broken-symmetry unrestricted, self-interaction corrected) in connection with the B3LYP functional, a stepwise mechanism involving the hydrotrioxyl (HOOO(*)) radical is proposed for the ozonation of hydrazines (RNHNHR, R = H, Ph, Me) that involves the abstraction of the N-hydrogen atom by ozone to form a radical pair, RNNHR(*) (*)OOOH. The hydrotrioxyl radical can then either abstract the remaining N(H) hydrogen atom from the RNNHR(*) radical to form the corresponding diazene (RN=NR), or recombines with RNNHR(*) in a solvent cage to form the hydrotrioxide, RN(OOOH)NHR. The decomposition of these very labile hydrotrioxides involves the homolytic scission of the RO-OOH bond with subsequent "in cage" formation of the diazene-N-oxide and hydrogen peroxide. Although 1,2-diphenyldiazene is unreactive toward ozone under conditions investigated, 1,2-dimethyldiazene reacts with relative ease to yield 1,2-dimethyldiazene-N-oxide and singlet oxygen (O(2), (1)delta(g)). The subsequent reaction sequence between these two components to yield nitromethane as the final product is discussed. The formation of formic acid and nitromethane in the ozonolysis of 1,2-dimethylhydrazine is explained as being due to the abstraction of a methyl H atom of the CH(3)NNHCH(3)(*) radical by HOOO(*) in the solvent cage. The possible mechanism of the reaction of the initially formed formaldehyde methylhydrazone (and HOOOH) with ozone/oxygen mixtures to produce formic acid and nitromethane is also discussed.  相似文献   

19.
The potential energy surface for protonated acetylene has been re-examined with large basis sets and highly correlated methods. The energy difference of 3.6–3.8 kcal/mol between the classical structure and non-classical (bridged) structure computed with CCSD (T)/cc-pVQZ, CCSD(T)/6-311+G(3df,2pd), BD(T)/cc- pVQZ, BD(T)/6-311+G(3df,2pd) and CBS-APNO methods is in very good agreement with the best previous calculations, 3.7–4.0 kcal/mol. In contrast, BLYP, B3LYP, PW91, PBE and TPSS density functional methods do rather poorly, yielding −0.52. 0.29, 1.81, 2.16 and 0.62 kcal/mol, respectively, with the 6-311+G(3df,2pd) basis. MP2 calculations predict the classical structure to be a transition state; however, frequency calculations at the CCSD/6-311+G(3df,2pd) level of theory show that the classical structure is a local minimum. CCSD(T), BD(T) and CBS-APNO energy calculations along the MP2/6-311+G(3df,2pd) reaction path indicate that the classical structure is a shallow local minimum separated from the non-classical structure by a very small barrier of 0.11–0.13 kcal/mol. Because the barrier for proton exchange between the non-classical isomers via the classical structure is broad and nearly flat at the top, the tunneling splitting should be reduced, possibly accounting for the 15% difference between the calculated and experimental barrier heights. Contribution to the Fernando Bernardi Memorial Issue.  相似文献   

20.
In this paper a new scheme was proposed to calculate the intramolecular hydrogen-bonding energies in peptides and was applied to calculate the intramolecular seven-membered ring N-H...O=C hydrogen-bonding energies of the glycine and alanine peptides. The density-functional theory B3LYP6-31G(d) and B3LYP6-311G(d,p) methods and the second-order Moller-Plesset perturbation theory MP26-31G(d) method were used to calculate the optimal geometries and frequencies of glycine and alanine peptides and related structures. MP26-311++G(d,p), MP26-311++G(3df,2p), and MP2/aug-cc-pVTZ methods were then used to evaluate the single-point energies. It was found that the B3LYP6-31G(d), MP26-31G(d), and B3LYP6-311G(d,p) methods yield almost similar structural parameters for the conformers of the glycine and alanine dipeptides. MP2/aug-cc-pVTZ predicts that the intramolecular seven-membered ring N-H...O=C hydrogen-bonding strength has a value of 5.54 kcal/mol in glycine dipeptide and 5.73 and 5.19 kcal/mol in alanine dipeptides, while the steric repulsive interactions of the seven-membered ring conformers are 4.13 kcal/mol in glycine dipeptide and 6.62 and 3.71 kcal/mol in alanine dipeptides. It was also found that MP26-311++G(3df,2p) gives as accurate intramolecular N-H...O=C hydrogen-bonding energies and steric repulsive interactions as the much more costly MP2/aug-cc-pVTZ does.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号