首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Rice husk was fast pyrolysed at temperatures between 420 °C and 540 °C in a fluidized bed, and the main product of bio-oil is obtained. The experimental result shows that the highest bio-oil yield of 56 wt% was obtained at 465 °C for rice husk. Chemical composition of bio-oil acquired was analyzed by GC–MS and its heat value, stability, miscibility and corrosion characteristics were determined. These results showed that bio-oil obtained can be directly used as a fuel oil for combustion in a boiler or a furnace without any upgrading. Alternatively, the fuel can be refined to be used by vehicles. Furthermore, the energy performance of the pyrolysis process was analyzed.  相似文献   

2.
Cellulose and cellulose/montmorillonite K10 mixtures of different ratio (9:1, 3:1, 1:1) were subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 46–73.5 wt% depending on the temperature, the heating rate and the amount of catalyst. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil (84 wt%). The blending cellulose with increasing amount of montmorillonite K10 results in significant, linear decrease in bio-oil yield. The great influence of montmorillonite K10 amount on the distribution of bio-oil components was observed at 450 °C with a heating rate of 100 °C/s. The addition of catalyst to cellulose promotes the formation of 2-furfural (FF), various furan derivatives, levoglucosenone (LGO) and (1R,5S)-1-hydroxy-3,6-dioxabicyclo-[3.2.1]octan-2-one (LAC). Simultaneously, the share of levoglucosan (LG) in bio-oil decreases from 6.92 wt% and is less than 1 wt% when cellulose:MK10 (1:1, w/w) mixture at 450 °C is rapidly pyrolyzed. Additionally, several other compounds have been identified but in minor quantities. Their contributions in bio-oil also depend on the amount of catalyst.  相似文献   

3.
An environmentally friendly and cost-competitive way of producing hydrogen is the catalytic steam reforming of biomass pyrolysis liquids, known as bio-oil, which can be separated into two fractions: ligninic and aqueous. Acetic acid has been identified as one of the major organic acids present in the latter, and catalytic steam reforming has been studied for this model compound. Three different Ni coprecipitated catalysts have been prepared with varying nickel content (23, 28 and 33% expressed as a Ni/(Ni + Al) relative at.% of nickel). Several parameters have been analysed using a microscale fixed-bed facility: the effect of the catalyst reduction time, the reaction temperature, the catalyst weight/acetic acid flow rate (W/mHAc) ratio, and the effect of the nickel content. The catalyst with 33% Ni content at 650 °C showed no significant enhancement of the hydrogen yield after 2 h of reduction compared to 1 h under the same experimental conditions. Its performance was poorer when reduced for just 0.5 h. For W/mHAc ratios greater than 2.29 g catalyst min/g acetic acid (650 °C, 33% Ni content) no improvement was observed, whereas for values lower than 2.18 g catalyst min/g acetic acid a decrease in product gas yields occurred rapidly. The temperatures studied were 550, 650 and 750 °C. No decrease in product gas yields was observed at 750 °C under the established experimental conditions. Below this temperature, the aforementioned decrease became more important with decreasing temperatures. The catalyst with 28% Ni content performed better than the other two.  相似文献   

4.
Three different products were obtained from the pyrolysis of dry peel sweet orange: bio-oil, char and non-condensable gases. The yield of each product was determined. The bio-oil was characterized by GC–MS to determine that can be used as a renewable source of valuable industrial chemicals or as a source of energy, high heating value was calculated by Channiwala and Parikh correlation based on Dulong's Formula.Thermogravimetric analysis at 1, 5, 10, 20, and 40 °C/min, shows three different overlapped steps resulting in an average mass loss of ∼80% within the temperature range of 114–569 °C. The bench scale pyrolysis experiments, produces average yields of 53.1, 21.1 and 25.8 wt.% for bio-oil, char and gases, respectively. Bio-oil characterization by GC–MS and FTIR identified limonene as its main component while other identified compounds included δ-limonene, alcohols, phenols, benzene, toluene, xylene and carboxylic acids.  相似文献   

5.
The effect of calcination temperatures on dry reforming catalysts supported on high surface area alumina Ni/γ-Al2O3 (SA-6175) was studied experimentally. In this study, the prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600, 700 and 800 °C at atmospheric pressure, using a total flow rate of 33 ml/min consisting of 3 ml/min of N2, 15 ml/min of CO2 and 15 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor at 500–800 °C using hydrogen gas. It was observed that calcination enhances catalyst activity which increases as calcination and reaction temperatures were increased. The highest conversion was obtained at 800 °C reaction temperature by using catalyst calcined at 900 °C and activation at 700 °C. The catalyst characterization conducted supported the observed experimental results.  相似文献   

6.
The cellulose without and with catalyst (CuCl2, AlCl3) was subjected to pyrolysis at temperatures from 350 to 500 °C with different heating rate (10 °C/min, 100 °C/s) to produce bio-oil and selected chemicals with high yield. The pyrolytic oil yield was in the range of 37–84 wt% depending on the temperature, the heating rate and the amount of metal chloride. The non-catalytic fast pyrolysis at 500 °C gives the highest yield of bio-oil. The mixing cellulose with both metal chlorides results with a significant decrease of the liquid product. The non-catalytic pyrolysis of cellulose gives the highest mass yield of levoglucosan (up to 11.69 wt%). The great influence of metal chloride amount on the distribution of bio-oil components was observed. The copper(II) chloride and aluminum chloride addition to cellulose clearly promotes the formation of levoglucosenone (up to 3.61 wt%), 1,4:3,6-dianhydro-α-d-glucopyranose (up to 3.37 wt%) and unidentified dianhydrosugar (MW = 144; up to 1.64 wt%). Additionally, several other compounds have been identified but in minor quantities. Based on the results of the GC–MS, the effect of pyrolysis process conditions on the productivity of selected chemicals was discussed. These results allowed to create a general model of reactions during the catalytic pyrolysis of cellulose in the presence of copper(II) chloride and aluminum chloride.  相似文献   

7.
Combustion of the rice husk produces rice husk ash, which consists of mainly silica. High purity silica can be produced by controlled combustion after acid treatment. In this study, leaching of rice husk with hydrochloric acid and sulfuric acid were carried out prior to combustion to obtain purer silica. It was found that pre-treatment of the rice husk with sulfuric acid had accelerated the hydrolysis and decomposition of organic components as revealed by thermogravimetry (TG) and Scanning Electron Microscopy (SEM) analyses. In a systematic study, the combustion of un-leached, hydrochloric acid-leached and sulfuric acid-leached rice husks were performed in a muffle furnace at 500, 600, 700, 800 and 900oC for 2 h. Results demonstrated that all the samples produced amorphous silica (SiO2) and the average particle size were in the range of 0.50 to 0.70 μm. The effect of combustion at different temperatures between 500oC and 900oC on the silica production is very small, particularly at temperature above 600oC. Thus, amorphous silica with purity above 99% as confirmed by X-Ray Fluorescence (XRF) analysis can be produced by hydrochloric and sulfuric acids leaching of the rice husk, followed by controlled combustion at 600oC for 2 h. The BET surface area of the silica produced after leaching the rice husk with hydrochloric acid was higher (218 m2/g) than with sulfuric acid (209 m2/g). The silica obtained has potential application as filler in plastics and rubber compounding.  相似文献   

8.
The chemical composition of liquid products of cellulose and lignin co-pyrolysis with polypropylene at 450 °C with and without the potassium carbonate or zinc chloride as an catalyst was investigated. The yield of liquid products of pyrolysis was in the range of 26–45 wt% and their form was liquid or semi-solid highly depending on the composition of sample and pyrolysis conditions. The potassium carbonate and zinc chloride addition to blends has also influenced the range of samples decomposition as well as the chemical composition of resulted bio-oils. All bio-oils from biopolymer and polypropylene mixtures were three-phase (water, oil and solid). While zinc chloride acted as catalyst, all bio-oils obtained from biopolymer and polypropylene mixtures were yellow liquids with well-separated water and oil phases. All analyses proved that the structure and quality of bio-oil strongly depends on both the composition of the blend and the presence of the additive. The FT-IR and GC–MS analyses of oils showed that oxygen functionalities and hydrocarbons contents highly depend on the composition of biomass/polypropylene mixture. Results confirmed the significant removal and/or transformation of oxygen containing organic compounds, i.e. levoglucosan, 1,6-anhydro-β-d-glucofuranose and phenol derivatives due to the zinc chloride presence during pyrolysis process. All analyses showed that zinc chloride as catalyst was generally much more effective for removal of hydroxyl and methoxy groups than was potassium carbonate. It was demonstrated in this study that catalysts used in present work lead to the increased char yield and improved the fuel quality of bio-oil.  相似文献   

9.
Gasification uses steam increases H2 content in the syngas. Kinetics of gasification process can be improved by using K2CO3 catalyst. Controlled heating rate in pyrolysis step determines the pore size of charcoal that affects yield gas and H2 and CO content in the syngas. In previous research, pyrolisis step was performed without considering heating rate in pyrolysis step. This experiment was performed by catalytic steam gasification using lignite char from pyrolysis with controlled heating rate intended to produce maximum yield of syngas with mole ratio of H2/CO ≈ 2. Slow heating rate (3 °C/min) until 850 °C in the pyrolysis step has resulted in largest surface area of char. This study was performed by feeding Indonesian lignite char particles and K2CO3 catalyst into a fixed bed reactor with variation of steam/char mole ratio (2.2; 2.9; 4.0) and gasification temperature (750 °C, 825 °C, and 900 °C). Highest ratio of H2/CO (1.682) was obtained at 750 °C and steam/char ratio 2.2. Largest gas yield obtained from this study was 0.504 mol/g of char at 900 °C and steam/char ratio 2.9. Optimum condition for syngas production was at 750 °C and steam/char mole ratio 2.2 with gas yield 0.353 mol/g of char and H2/CO ratio 1.682.  相似文献   

10.
Catalytic generation of hydrogen by steam reforming of acetic acid over a series of Ni–Co catalysts have been studied. The catalyst with the molar ratio of 0.25:1 between Ni and Co was superior to other catalysts. The effects of reaction temperature, liquid hourly space velocity (LHSV) and molar ratios of steam-to-carbon (S/C) were studied in detail over this catalyst. At T = 673 K, LHSV = 5.1 h−1, S/C = 7.5:1, the catalyst exhibited the best performances. Acetic acid was converted completely to hydrogen, while H2 selectivity reached up to 96.3% and CO2 selectivity up to 98.1% was obtained, respectively. Ni–Co catalyst showed rather stable performances for the 70 h time-on-stream without any deactivation.  相似文献   

11.
Meat and bone meal (MBM) is a mass-produced by-product of the meat rendering industry. It has great potential as a feedstock for the production of bio-fuels. Meat and bone meal, however, is a highly cohesive and temperature sensitive material and has traditionally been found to be very difficult, if not impossible, to feed properly into pyrolysis reactors or bubbling fluidized beds. This study showcases an application of the ICFAR intermittent solid slug feeder technology and its capability of successfully feeding the MBM regularly at an average feeding rate of 0.34 g/s into the reactor.A highly automated and instrumented fast pyrolysis pilot plant has been used to process meat and bone meal residues and to operate within a wide range of temperatures (450–600 °C). This is the first study dealing with the pyrolysis of pure meat and bone meal at various operating conditions continuously fed into a laboratory-scale fluidized bed reactor. All liquid and solid products have been analyzed (yields, HHV, GC–MS, elemental analysis, and ash mineral analysis). The homogenous bio-oil produced is an attractive fuel with a significant high heating value (HHV) of 31.5 MJ/kg and an average liquid yield of 43 wt% at 550 °C. The highest water-free HHV (36.7 MJ/kg) was found at 500 °C, with a liquid yield of 35 wt% at this temperature. The optimized pyrolysis temperature, at which the heat from the gas combustion can provide the heat required for processing MBM, while maximizing the bio-oil liquid yield and process energy yield, is 550 °C. Under these conditions, the pyrolysis process energy yield is 91%.The study also demonstrates a new technique to accurately determine the heat of pyrolysis reaction energy required by the process, using a non-invasive water calibration method.  相似文献   

12.
The radiolysis of methane (0.7 MeV electron beam) was studied as a function of its concentration at two doses: 5 and 20 kGy. In both cases the G (–CH4) value raised with the increase of the substrate concentration. Thereby the yields observed at 20 kGy are much lower, because of recombination processes. Results are also reported on the conversion of the gas mixture CH4:CO2:He=1:1:1 into synthetic gas (H2/CO) at 500 °C, using two catalysts : (N5) and (N20), containing 5 wt% Ni and 20 wt% Ni, respectively, supported on γ-Al2O3. In an experimental series the catalysts (N5) and (N20) were treated by irradiation (4 MGy dose) before use. The highest conversion yields (above 35%) were observed by implementation of N5 and N20 catalyst at 500 °C under the influence of electron beam radiation.  相似文献   

13.
This article reports experimental results on fast pyrolysis of agricultural residues from cassava plantations, namely cassava rhizome (CR) and cassava stalk (CS), in a fluidised-bed fast pyrolysis reactor unit incorporated with a hot vapour filter. The objective of this research was to investigate the effects of reaction temperatures, biomass particle size and the use of simple hot vapour filtration on pyrolysis product yields and properties. Results showed that the optimum pyrolysis temperatures for CR and CS were 475 °C and 469 °C, which gave maximum bio-oil yields of 69.1 wt% and 61.4 wt% on dry biomass basis, respectively. The optimum particle size for bio-oil production in this study was 250–425 μm. The use of the hot filter led to a reduction of 6–7 wt% of bio-oil yield. Nevertheless, the filtered bio-oils appeared to have a better quality in terms of initial viscosity, solids content, ash content and stability.  相似文献   

14.
Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD) and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.  相似文献   

15.
In this paper, thermogravimetry, TG, and pyrolysis are used for the thermochemical evaluation of the common reed (Pragmites australis) as a candidate biomass feedstock. The TG analysis indicated that the material loses 4% of its weight below 150 °C through dehydration. The main decomposition reaction occurs between 200 and 390 °C. The rate of weight loss, represented by the derivative thermogravimetric, DTG, signal indicated a multi-step reaction. Kinetic analysis helped in the resolution of the temperature ranges of the overlapping steps. The first step corresponds to the degradation of the hemi-cellulosic fraction and the second to the cellulosic fraction degradation. The TG and DTG signals of reed samples treated with increasing concentration of potassium carbonate (0.6–10 wt%) indicated a catalytic effect of the salt on reed decomposition. The temperature of maximum weight loss rate, DTGmax, exponentially decreased with increasing catalyst content, whilst the initial temperature of the decomposition decreased linearly. The pyrolysis studies were carried out in a Pyrex vertical reactor with sintered glass disc to hold the sample and to aid the fluidization with the nitrogen stream flowing upwards. The reactor was connected to a cyclone and condenser and a gas sampling device. Tar and char are collected and weighed. The gas chromatographic analysis of the evolved gases demonstrated the effect of pyrolysis temperature (400, 450, and 500 °C) on their composition. The temperature increase favors the yields of hydrocarbons, carbon monoxide and hydrogen at the expense of methanol and carbon dioxide. Similarly, reed samples treated with K2CO3 at 10 wt% were pyrolyzed and analyzed. Comparisons for the various parameters (yields, gas composition and carbon–hydrogen recovery) between the untreated and catalyzed reed conversion were also made.  相似文献   

16.
In this study, the upgrading by torrefaction of leucaena, woody biomass, at 200–250 °C under volumetric pressure up to 4 MPa was examined. It was found that the yield of torrefied leucaena decreased with the increase in torrefaction temperature, whereas at the same temperature the yield of torrefied leucaena increased with the increase in torrefaction pressure. From the elemental analyses, the higher carbon content in torrefied leucaena can be achieved by the rising of torrefaction pressure. As large as 92.6% of carbon was recovered in the torrefied leucaena prepared at 250 °C and 4 MPa. On the other hand, the oxygen content decreased to 31.1% for the leucaena torrefied at 250 °C and 4 MPa. The higher heating value (HHV) of leucaena torrefied at high pressure increased significantly when compared to that of leucaena torrefied at atmospheric pressure. As large as 94.3% of energy yield was achieved with the mass yield of 74.4% for the torrefaction at 250 °C and 4 MPa. From the subsequent pyrolysis and combustion in TGA, leucaena torrefied under pressure showed the difference of weight decreasing curves comparing to that of leucaena torrefied at atmospheric pressure. It was found that the weight of leucaena torrefied at high pressure started to decrease at temperature lower than 200 °C. The char yield at 800 °C for the leucaena torrefied at high pressure increased with the increase in torrefaction pressure. These results suggested that the structure of leucaena was changed by the torrefaction under pressure and the cross-linking reactions during the pyrolysis were enhanced by the pressure during the torrefaction resulting in increase in char yields. The substantial increase in char combustion rate was also found for leucaena torrefied under pressure.  相似文献   

17.
This paper describes the conventional and microwave-assisted pyrolysis of coffee hulls at 500, 800 and 1000 °C. The influence of the pyrolysis method and temperature on the product yields and on the characteristics of the pyrolysis products is discussed. It was found that the pyrolysis of this particular residue gives rise to a larger yield of the gas fraction compared to the other fractions, even at relatively low temperatures. A comparison of microwave-assisted pyrolysis and conventional pyrolysis showed that microwave treatment produces more gas and less oil than conventional pyrolysis. In addition, the gas from the microwave has much higher H2 and syngas (H2 + CO) contents (up to 40 and 72 vol.%, respectively) than those obtained by conventional pyrolysis (up to 30 and 53 vol.%, respectively), in an electric furnace, at similar temperatures. From the pyrolysis fraction yields and their higher heating values it was found that the energy distribution in the pyrolysis products decreases as follows: gas > solid > oil. Moreover, the energy accumulated in the gas increases with the pyrolysis temperature. By contrast, the energy accumulated in the char decreases with the temperature. This effect is enhanced when microwave pyrolysis is used.  相似文献   

18.
A mixed-conducting perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) ceramic membrane reactor with high oxygen permeability was applied for the activation of methane. The membrane reactor has intrinsic catalytic activities for methane conversion to ethane and ethylene. C2 selectivity up to 40–70% was achieved, albeit that conversion rate were low, typically 0.5–3.5% at 800–900°C with a 50% helium diluted methane inlet stream at a flow rate of 34 ml/min. Large amount of unreacted molecular oxygen was detected in the eluted gas and the oxygen permeation flux improved only slightly compared with that under non-reactive air/He experiments. The partial oxidation of methane to syngas in a BSCFO membrane reactor was also performed by packing LiLaNiO/γ-Al2O3 with 10% Ni loading as the catalyst. At the initial stage, oxygen permeation flux, methane conversion and CO selectivity were closely related with the state of the catalyst. Less than 21 h was needed for the oxygen permeation flux to reach its steady state. 98.5% CH4 conversion, 93.0% CO selectivity and 10.45 ml/cm2 min oxygen permeation flux were achieved under steady state at 850°C. Methane conversion and oxygen permeation flux increased with increasing temperature. No fracture of the membrane reactor was observed during syngas production. However, H2-TPR investigation demonstrated that the BSCFO was unstable under reducing atmosphere, yet the material was found to have excellent phase reversibility. A membrane reactor made from BSCFO was successfully operated for the POM reaction at 875°C for more than 500 h without failure, with a stable oxygen permeation flux of about 11.5 ml/cm2 min.  相似文献   

19.
《Comptes Rendus Chimie》2015,18(6):685-692
Raney Ni–Al alloy was found to be capable of reducing benzophenones to the corresponding diphenylmethanes (2) in water in good to excellent yields within 3 h at 60 °C in a sealed tube. The complete reduction process of both aromatic rings required 18 h at 80 °C with Raney Ni–Al and Al powder in the presence of Pt/C. The nature of the hydrogenated products was also found to greatly depend on temperature, reaction time, volume of water, and amount of Raney Ni–Al alloy being used.  相似文献   

20.
The pyrolysis of thermally thick (approximately 75 g) biomass residues samples (i.e. brewer spent grains, fibreboard and coffee beans waste) has been investigated in an in-house designed and fabricated macro-TGA both by rapid sample introduction at reactor temperatures from 600 to 900 °C and by applying a constant heating rate of 10 K/min. The composition of the product gas is determined by simultaneous online use of a micro-GC and a FTIR analyser. The product yields (liquid, char and gas) and the gas composition show a clear dependence on temperature and heating rate. The main gas products are CO2, CO, CH4, H2, C2H2, C2H6 and C2H4. The results show that a rise in temperature leads to increasing gas yields and decreasing liquid and char yields. Lower heating rates favour liquid and char yields. The release patterns of the gaseous species are also greatly affected by the temperature history of the sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号