首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present resonant two-photon ionization and IR-UV double resonance spectra of methylated xanthine derivatives including 7-methylxanthine dimer and theobromine dimer seeded in a supersonic jet by laser desorption. For 7-methylxanthine, theophylline and theobromine monomer we assign the lowest energy tautomer based on comparison with IR-UV double resonance spectra and calculated IR frequencies. For the 7-methylxanthine dimer, we observe hydrogen bonding on the N3H position suggesting 3 possible combinations, one that is reverse Watson-Crick type and two that are reverse Hoogsteen type. For the theobromine dimer, we observe a stacked structure. For trimethylxanthine dimers we infer a stacked structure as well.  相似文献   

2.
We present resonant two-photon ionization (R2PI), IR-UV, and UV-UV double resonance spectra of jet-cooled 2-aminopurine (2AP) as well as Fourier transform infrared (FTIR) gas phase spectra. 2AP is a fluorescing isomer of the nucleobase adenine. The results show that there is only one tautomer of 2AP which absorbs in the wavelength range 32,300-34,500 cm(-1). The comparison with the calculated IR spectra of 9H- and 7H-2AP points to 9H-2AP as the dominating tautomer in the gas phase but the spectra are too similar to allow an unambiguous assignment to the respective tautomer. Hence, we determined vertical and adiabatic excitation energies of both tautomers employing combined density functional theory and multi-reference configuration interaction techniques. For the 0-0 band of the first 1pipi* transition of 9H-2AP we obtain a theoretical value of 32,328 cm(-1), in excellent agreement with the band origin of our R2PI spectrum at 32,371 cm(-1). The first singlet pipi* transition of the less stable 7H-2AP tautomer is predicted to be red-shifted by about 1700 cm(-1) with respect to the corresponding transition in 9H-2AP. From the absence of experimental bands in the energy region between 30,300 and 32,350 cm(-1) we conclude that 7H-2AP is not present to an appreciable extent in the molecular beam. Our calculations yield nearly equal energies for the 1npi* and 1pipi* minima of isolated 2AP, similar to the situation in adenine. The hitherto existing argument that the energetic order of states is responsible for the different spectroscopic properties of these isomers therefore does not hold. Rather, vibronic levels close to the origin of the 1pipi* transition cannot access the conical intersection between the 1pipi* and S(0) states along a puckering coordinate of the six-membered ring, in contrast to the situation in electronically excited 9H-adenine. As a consequence, a rich vibrational structure can be observed in the R2PI spectrum of 2AP whereas the spectrum of 9H-adenine breaks off at low energies.  相似文献   

3.
We present the IR-UV double resonance spectrum of guanine monohydrate in the region 3100 cm(-1) to 3800 cm(-1) along with the energies and frequencies of these structures calculated at the non-empirical correlated ab initio RI-MP2/cc-pVDZ level. We assign the structures of guanine-water clusters by comparing the experimental spectra with the ab initio calculations and with the IR spectra of the bare guanine monomer. We find two clusters with guanine in the enol-amino tautomeric form and one structure with guanine in the keto-amino form.  相似文献   

4.
The OH-stretch overtone spectroscopy and dynamics of the hydroxymethyl radical, CH(2)OH, are reported in the region of the second and third overtones, which is above the thermochemical threshold to dissociation to H+CH(2)O (D(0)=9600 cm(-1)). The second overtone spectrum at 10 484 cm(-1) is obtained by double resonance IR-UV resonance enhanced multiphoton ionization (REMPI) spectroscopy via the 3p(z) electronic state. It is rotationally resolved with a linewidth of 0.4 cm(-1) and displays properties of local-mode vibration. No dissociation products are observed. The third overtone spectra of CH(2)OH and CD(2)OH are observed at approximately 13 600 cm(-1) by monitoring H-atom photofragments while scanning the excitation laser frequency. No double resonance REMPI spectrum is detected, and no D fragments are produced. The spectra of both isotope analogs can be simulated with a linewidth of 1.3 cm(-1), indicating dissociation via tunneling. By treating the tunneling as one dimensional and using the calculated imaginary frequency, the barrier to dissociation is estimated at about 15 200 cm(-1), in good agreement with theoretical estimations. The Birge-Sponer plot is linear for OH-stretch vibrations 1nu(1)-4nu(1), demonstrating behavior of a one-dimensional Morse oscillator. The anharmonicity parameter derived from the plot is similar to the values obtained for other small OH containing molecules. Isomerization to methoxy does not contribute to the predissociation signal and the mechanism appears to be direct O-H fission via tunneling. CH(2)OH presents a unique example in which the reaction coordinate is excited directly and leads to predissociation via tunneling while preserving the local-mode character of the stretch vibration.  相似文献   

5.
In the present work, we have investigated the structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet by employing resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. The R2PI spectrum of the dimer is recorded by electronic excitation of the 7-azaindole moiety, and a few low frequency intermolecular vibrations of the dimer are clearly observed in the spectrum. The electronic origin band of the dimer is red-shifted by 1278 cm(-1) from the S(1) ← S(0) origin band of 7-azaindole monomer. The presence of a single conformer of the dimer is confirmed by IR-UV and UV-UV hole-burning spectroscopic techniques. RIDIR (Resonant ion dip infrared) spectrum of the dimer shows a red-shift of 265 cm(-1) in the N-H stretching frequency with respect to that of the 7-azaindole monomer. Two planar double hydrogen bonded cyclic structures of the dimer have been predicted from DFT calculations. Comparison of experimental and theoretical N-H stretching frequencies confirms that the observed dimer is stabilized by N-H···N and C-H···N hydrogen bonding interactions. The less stable conformer with N-H···F and C-H···N interactions are not observed in the experiment. The competition between N-H···N and N-H···F interactions in the two dimeric structures are discussed from natural bond orbital (NBO) analysis. The current results demonstrate that fluorine makes a hydrogen bond of intermediate strength through cooperative interaction of another hydrogen bond (C-H···N) present in the dimer, although fluorine is believed to be very weak hydrogen bond acceptor.  相似文献   

6.
The laser-induced fluorescence spectra of jet-cooled benzo-18-crown-6 (B18C6) and dibenzo-18-crown-6 (DB18C6) exhibit a number of vibronic bands in the 35 000-37 000 cm(-1) region. We attribute these bands to monomers and hydrated clusters by fluorescence-detected IR-UV and UV-UV double resonance spectroscopy. We found four and two conformers for bare B18C6 and DB18C6, and the hydration of one water molecule reduces the number of isomers to three and one for B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1), respectively. The IR-UV spectra of B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) suggest that all isomers of the monohydrated clusters have a double proton-donor type (bidentate) hydration. That is, the water molecule is bonded to B18C6 or DB18C6 via two O-H[dot dot dot]O hydrogen bonds. The blue shift of the electronic origin of the monohydrated clusters and the quantum chemical calculation suggest that the water molecule in B18C6-(H(2)O)(1) and DB18C6-(H(2)O)(1) prefers to be bonded to the ether oxygen atoms near the benzene ring.  相似文献   

7.
Time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy provides a distinctive way to examine collision-induced state-to-state energy transfer between rotational J-levels in vibrational manifolds of small polyatomic molecules, such as acetylene (C2H2) in its electronic ground state X. We consider the 4nuCH rovibrational manifold of C2H2 at approximately 12,700 cm(-1), where the principal source of IR-brightness is the (nu1+3nu3) or (1 0 3 0 0)0 Sigma+u vibrational combination level. In this highly congested manifold, anharmonic, l-resonance, and Coriolis couplings affect the J-levels of interest, implicating them in a complicated variety of intramolecular dynamics. Previous papers of this series have reported several seemingly anomalous J-resolved phenomena induced by collisions in C2H2 gas at room temperature with pressures and IR-UV pump-probe delay intervals corresponding to remarkably high Lennard-Jones collisional efficiencies P: odd-DeltaJ rotational energy transfer (10(-3)相似文献   

8.
Eugenol (4-Allyl-2-methoxyphenol), a phenol-derivative with an intramolecular -OH ...OCH(3) hydrogen bond (H bond), has been studied in a supersonic expansion using a number of complementary laser spectroscopic techniques. The mass-resolved excitation spectrum of eugenol and its water complexes are reported for the first time. The most intense set of bands on the resonantly enhanced multiphoton ionization (REMPI) spectrum of eugenol originate in a conformer whose S(1)<--S(0) transition is at 35 202 cm(-1) and the ionization threshold at (I(0)<--S(0)) 62 544+/-150 cm(-1) (7.755+/-0.019 eV). In addition, two low intensity features redshifted with respect to the 0(0) (0) transition have been identified as due to a second, less stable conformer. Ab initio calculations show that the potential energy landscape depicts at least three minima associated with one folded and two extended conformers, one of which is the most stable. Clusters of eugenol/water were prepared in a supersonic expansion by seeding eugenol and water in noble gas He and examined by two-color REMPI (R2PI) and IR-UV double resonance spectroscopies. Only one single isomer was observed for both 1:1 and 1:2 complexes, in contrast with the several stable conformers provided by the computations. The dissociation energies of the 1:1 and 1:2 complexes have been determined by the fragmentation threshold method and the results compared with those from ab initio calculations conducted at the B3LYP and MP2 levels with a variety of basis sets.  相似文献   

9.
The hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ar complex with two quanta of CN stretch (v(CN) = 2), along with its ground state (v(CN) = 0), have been characterized by IR-UV double resonance and UV spectroscopy. Analysis of rotationally structured bands enable n(K) assignments and reveal perturbations due to Coriolis coupling between two closely spaced hindered rotor states, n(K) = 1(1) and 1(0). A deperturbation analysis is carried out to derive accurate rotational constants and their associated CN center-of-mass to Ar bond lengths as well as the magnitude of the coupling. The energetic ordering and spacings of the CN-Ar hindered rotor states provide a direct experimental probe of the angular dependence of the CN X (2)Σ(+) + Ar potential and permit radially averaged anisotropy parameters (V(10) = 5.2 cm(-1) and V(20) = 3.2 cm(-1)) to be determined. This analysis indicates a relatively flat potential about a linear N≡C-Ar configuration with a barrier to CN internal rotation of only ~12 cm(-1). The angular potentials determined from experiment and ab initio theory are in good accord, although theory predicts a higher barrier to CN internal rotation. A similar approach yields the infrared spectrum of H(2)-CN in the CN overtone region, which exhibits a rotationally resolved Σ ← Σ parallel band that is consistent with theoretical predictions for ortho-H(2)-CN.  相似文献   

10.
IR-UV double resonance spectroscopy has been used to characterize hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ne complex in its ground electronic state with various degrees of CN stretch (ν(CN)) excitation. Rotationally resolved infrared overtone spectra of the CN-Ne complex exhibit perturbations arising from Coriolis coupling between the closely spaced hindered rotor states (1(1) and 1(0)) with two quanta of CN stretch (ν(CN) = 2). A deperturbation analysis is used to obtain accurate rotational constants and associated average CN center-of-mass to Ne separation distances as well as the coupling strength. The energetic ordering and spacings of the hindered internal rotor states provide a direct reflection of the weakly anisotropic intermolecular potential between CN X (2)Σ(+) and Ne, with only an 8 cm(-1) barrier to CN internal rotation, from which radially averaged anisotropy parameters (V(10) and V(20)) are extracted that are consistent for ν(CN) = 0-3. Complementary ab initio calculation of the CN X (2)Σ(+) + Ne potential using MRCI+Q extrapolated to the complete one-electron basis set limit is compared with the experimentally derived anisotropy by optimizing the radial potential at each angle. Experiment and theory are in excellent accord, both indicating a bent minimum energy configuration and nearly free rotor behavior. Analogous experimental and theoretical studies of the CN-Ne complex upon electronic excitation to the CN B (2)Σ(+) state indicate a slightly more anisotropic potential with a linear CN-Ne minimum energy configuration. The results from these IR-UV double resonance studies are compared with prior electronic spectroscopy and theoretical studies of the CN-Ne system.  相似文献   

11.
Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition,ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d,p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31G level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.  相似文献   

12.
We describe a new approach to IR-UV double resonance spectroscopy of NO-containing van der Waals complexes. The basic idea combines REMPI detection through a hot band transition with a simultaneous frequency scan of the IR and UV lasers in such a way that the combined photon energy is kept constant throughout the scan, matching a UV resonance transition in the system. As a result, the two-dimensional frequency problem is reduced to a fixed number of one-dimensional frequency scans, each defined by a particular photon energy sum. The method is applied to the near-IR spectrum of NO-Ar using hot band detection via the electronic A state of the complex. In the frequency range from 3718 to 3765 cm(-1), we recorded the previously known vibrational bands with improved frequency resolution. The increased sensitivity of the present experiment allowed us to measure for the first time their overtone, combination, and hot bands. Through the comparison with results of a close-coupling (CC) calculation, we were able to assign most of the rovibrational structures of the spectrum. Except for the first intermolecular stretch level, the band positions and rotational structures of the observed bands are in good agreement with the predictions of the CC calculations.  相似文献   

13.
Collision-induced state-to-state molecular energy transfer between rovibrational states in the 12,700 cm(-1) 4nu(CH) manifold of the electronic ground state X of acetylene (C(2)H(2)) is monitored by time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. Rotational J-states associated with the (nu(1) + 3nu(3)) or (1 0 3 0 0)(0) vibrational combination level, initially prepared by an IR pulse, are probed at approximately 299, approximately 296, or approximately 323 nm with UV laser-induced fluorescence via the Alpha electronic state. The rovibrational J-states of interest belong to a congested manifold that is affected by anharmonic, l-resonance, and Coriolis couplings, yielding complex intramolecular dynamics. Consequently, collision-induced rovibrational satellites observed by IR-UV DR comprise not only regular even-DeltaJ features but also supposedly forbidden odd-DeltaJ features. A preceding paper (J. Phys. Chem. A 2003, 107, 10759) focused on low-J-value rovibrational levels of the 4nu(CH) manifold (particularly those with J = 0 and J = 1) whereas this paper examines locally perturbed states at higher values of J (particularly J = 17 and 18, which display anomalous doublet structure in IR-absorption spectra). Three complementary forms of IR-UV DR experiments (IR-scanned, UV-scanned, and kinetic) are used to address the extent to which intramolecular perturbations influence the efficiency of J-resolved collision-induced energy transfer with both even and odd DeltaJ.  相似文献   

14.
The B(2)Π-X(2)Σ(+) electronic spectrum of C(4)H has been studied by degenerate and double resonance four-wave mixing. The technique identifies vibrational levels in the X(2)Σ(+) ground state. Its sensitivity and unique characteristics permit detection of new levels. The A(2)Π state lying 222 cm(-1) above the X(2)Σ ground state is also observed, confirming the analysis from anion photoelectron spectroscopy but with improved accuracy. Vibrational level determination in the A(2)Π electronic manifold up to 700 cm(-1) above v = 0 is made. A Renner-Teller analysis is carried out for the two lowest bending modes v(6) and v(7) in the A(2)Π state by diagonalization of the effective Hamiltonian matrix. The Renner-Teller parameters ∈(6), ∈(7), and ∈(67), the vibrations ω(6) and ω(7) and the spin-orbit coupling constant A(so) are determined.  相似文献   

15.
We report UV photodissociation (UVPD) and IR-UV double-resonance spectra of dibenzo-18-crown-6 (DB18C6) complexes with alkali metal ions (Li(+), Na(+), K(+), Rb(+), and Cs(+)) in a cold, 22-pole ion trap. All the complexes show a number of vibronically resolved UV bands in the 36,000-38,000 cm(-1) region. The Li(+) and Na(+) complexes each exhibit two stable conformations in the cold ion trap (as verified by IR-UV double resonance), whereas the K(+), Rb(+), and Cs(+) complexes exist in a single conformation. We analyze the structure of the conformers with the aid of density functional theory (DFT) calculations. In the Li(+) and Na(+) complexes, DB18C6 distorts the ether ring to fit the cavity size to the small diameter of Li(+) and Na(+). In the complexes with K(+), Rb(+), and Cs(+), DB18C6 adopts a boat-type (C(2v)) open conformation. The K(+) ion is captured in the cavity of the open conformer thanks to the optimum matching between the cavity size and the ion diameter. The Rb(+) and Cs(+) ions sit on top of the ether ring because they are too large to enter the cavity of the open conformer. According to time-dependent DFT calculations, complexes that are highly distorted to hold metal ions open the ether ring upon S(1)-S(0) excitation, and this is confirmed by extensive low-frequency progressions in the UVPD spectra.  相似文献   

16.
The complexes between the host calix[4]arene (C4A) and various guest molecules such as NH(3), N(2), CH(4), and C(2)H(2) have been investigated via experimental and theoretical methods. The S(1)-S(0) electronic spectra of these guest-host complexes are observed by mass-selected resonant two-photon ionization (R2PI) and laser-induced fluorescence (LIF) spectroscopy. The IR spectra of the complexes formed in molecular beams are obtained by IR-UV double resonance (IR-UV DR) and IR photodissociation (IRPD) spectroscopy. The supramolecular structures of the complexes are investigated by electronic structure methods (density functional and second order perturbation theory). The current results for the various molecular guests are put in perspective with the previously reported ones for the C4A-rare gas (Rg) (Phys. Chem. Chem. Phys. 2007, 126, 141101) and C4A-H(2)O complexes (J. Phys. Chem. A, 2010, 114, 2967). The electronic spectra of the complexes of C4A with N(2), CH(4), and C(2)H(2) exhibit red-shifts of similar magnitudes with the ones observed for the C4A-Rg complexes, whereas the complexes of C4A with H(2)O and NH(3) show much larger red-shifts. Most of the IR-UV DR spectra of the complexes, except for C4A-C(2)H(2), show a broad hydrogen-bonded OH stretching band with a peak at ~3160 cm(-1). The analysis of the experimental results, in agreement with the ones resulting from the electronic structure calculations, suggest that C4A preferentially forms endo-complexes (guests inside the host calizarene cavity) with all the guest species reported in this study. We discuss the similarities and differences of the structures, binding energies, and the nature of the interaction between the C4A host and the various guest species.  相似文献   

17.
The laser-induced fluorescence spectrum of jet-cooled L-tyrosine exhibits more than 20 vibronic bands in the 35450-35750 cm(-1) region. We attribute these bands to eight conformers by using results of UV-UV hole-burning spectroscopy. These isomers are classified into four groups; each group consists of two rotational isomers that have a similar side-chain conformation but different orientations of the phenolic OH. The splitting of band origins of rotational isomers is 31, 21, 5, and 0 cm(-1) for these groups. IR-UV spectra suggest that conformers belonging to two of the four groups have an intramolecular OH...N hydrogen bond between the COOH and NH2 groups. By comparing experimental and theoretical results of L-tyrosine with those of L-phenylalanine, we propose probable conformers of L-tyrosine.  相似文献   

18.
We have employed IR-UV double resonance spectroscopy to identify the tautomeric and isomeric structures of uric acid and its monohydrated clusters which are produced by the techniques of laser-desorption and supersonic-jet cooling. The IR spectrum obtained for bare uric acid exhibits four distinct NH stretching transitions assignable to those of the most stable triketo form. We have also observed the two most stable monohydrated clusters, each with uric acid in the triketo form and water bonded to either the N3H or N9H site. It is demonstrated that the R2PI spectra of these monohydrates can be separated by using the IR-purified spectroscopic method.  相似文献   

19.
用红外-紫外激光双共振技术首次测定了苯的ν_(10), ν_(11), 3ν_(16), ν_4等8个单振动能级的弛豫速率。弛豫过程量现双指数衰减特性, 它们相当于V-V和V-T弛豫过程, 例如16_110_1能级的T-V和V-T弛豫速率常数分别为0.59×10~5和0.023×10~6 s~(-1)Torr~(-1)。  相似文献   

20.
The S(0) → S(1) fluorescence excitation spectrum of jet-cooled 1H2N with origin at 25484 cm(-1) has been measured. Twelve totally symmetric modes and five non-totally symmetric modes have been assigned in the excitation spectrum. Theoretical calculations at DFT B3LYP/6-31G** and CIS/6-31G** levels indicate that the 1H2N molecular geometry is more planar in the S(1) state than in the ground state. The geometry of the naphthalene ring changes upon excitation and promotes a number of totally symmetric ring stretching modes, in the excitation spectrum. As a result of the geometry change upon excitation a number of non-totally symmetric modes gain intensity. Based on a rotational envelope fitting procedure the average excited rotational state lifetime was estimated to be between 7 and 16 ps for 0 ≤E≤ hc × 800 cm(-1) (E is excess energy above the S(1) origin). The decay rate coefficients, k, of the rotational S(1) states, are not constant over this range of excess energies. By applying a Golden Rule model, it was determined that internal conversion to S(0) is unlikely to be the sole non-radiative process contributing to the decay of the excited states. It was concluded that excited state intramolecular proton transfer (ESIPT) plays a role in the observed behaviour of the rate co-efficient with excess energy. The observation of (i) a sharp increase in rate coefficient, k, above an excess energy of ~550 cm(-1), and (ii) a significant number of high intensity fluorescence excitation spectrum features above an excess energy of ~700 cm(-1), may indicate the presence of an energy barrier of ~550 cm(-1), between the enol and keto geometries in the S(1) state. This result supports the conclusions of S. De, S. Ash, S. Dalai and A. Misra, J. Mol. Struc. Theochem, 2007, 807, 33-41, who estimated a barrier to ESIPT of ~750 cm(-1). It was concluded that ESIPT occurs in 1H2N, across an energy barrier with a rate constant, k(pt)≤ 10(11) s(-1). Hence, at low excess energies (≤ 550 cm(-1)), the observed emission band originates predominantly from the keto tautomer. Above an excess energy of ~1600 cm(-1), 1H2N decays predominantly via a non-radiative mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号