首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A single-axial-mode, passively Q-switched (PQS) diode-pumped Nd:YAG laser, generating a diffraction-limited beam train of ≈40–60 μJ, ∼500-ps pulses with adjustable repetition rate in the range 1–10 kHz, was efficiently amplified by a single side-pumped Nd:YVO4 bounce amplifier. After double-pass amplification, ≈1-MW pulse peak power with 577-ps duration and 545-μJ energy was achieved, still maintaining diffraction-limited beam performance. The average output power was 5.45 W at 10 kHz, corresponding to 13% extraction efficiency. The high brightness of this laser system seems ideal for nonlinear optics and some particular laser processing applications.  相似文献   

2.
An efficient continuous wave (CW) and Q-switched c-cut Tm:YAP laser is reported in this letter. With the dual-end-pumped convex-concave resonator, CW output power up to 13.6 W at 1.99 μm was obtained under a total incident pump power of 50 W. The corresponding slope efficiency was 34.3% and conversion efficiency was 27.2%. The active Q-switched operation of the laser had an average output power of 12.5 W at 10 kHz pulse repetition frequency, with a minimum pulse width of 126 ns. With 6 kHz pulse repetition frequency, the maximum pulse energy of 1.6 mJ was obtained. In addition, using the Tm:YAP laser as a pumping source for gain-switched Cr:ZnSe laser, as much as 4 W output power in the wavelength range of 2.5–2.6 μm was obtained.  相似文献   

3.
A study is made of the effect of pulse repetition rate (0.1−103 s−1) and average discharge current (0–1 A) on the breakdown delay time and burning voltage of low-pressure glow discharges (p<0.1 Pa) in an electrode system of the reverse magnetron type with a large cathode surface area (≈103 cm2). It is shown that increasing the repetition rate leads to a many-fold reduction in the statistical spread in the delay time and in the discharge formation time, while the average discharge current has a significant effect on the burning voltage. The mechanism for the observed phenomena is interpreted qualitatively in terms of the presence of thin dielectric films on the cathode surface. Zh. Tekh. Fiz. 69, 20–24 (May 1999)  相似文献   

4.
We report on an all fiber Master Oscillator Power Amplifier (MOPA) structured pulsed-pumped fiber-amplifier seeded by laser diode and modulated by current with an output of several nanojoule energy at 100 Hz repetition rate. To suppress ASE, pulse-pumped technology was adopted in four stages of amplification. By means of this technology, repetition could be adjusted freely without change of pump current which is different from continuous pump. 80 μJ output was achieved in 18 ns pulses in the 15 μJ amplification stage. Moreover, we achieved over 1.2 mJ/pulse with pulses of 10 ns between 1 Hz to 100 Hz repetition in the 30 μm core amplification stage with output beam quality of M 2 ≈ 1.4. Energy was limited by launched pump power.  相似文献   

5.
Intra-cavity sum frequency generation (SFG) of c-cut Nd:YVO4 self-Raman laser was investigated for the first time. A 4 × 4 × 10 mm3 KTP crystal with a type-II phase-matching cutting angle (θ = 83.4°, φ = 0°) was used for SFG between the fundamental light at 1066 nm and first-Stokes light at 1178 nm. The laser system with different curvature radii of output couplers and different pulse repetition frequencies were investigated. At a pump power of 14 W and pulse repetition frequency of 20 kHz, the average output power of yellow-green laser at 560 nm up to 840 mW was achieved, corresponding to a slope efficiency of 7.6% and a conversion efficiency of 6% with respect to diode pump power.  相似文献   

6.
Possible parametric oscillation of 3-THz pulse at synchronous pumping of the ZnGeP2 crystal by a train of short second-harmonic pulses from the CO2 laser has been analyzed. Calculation shows that at changing laser pulse duration τ between 4 and 500 ps and correspondingly pumping energy density (0.5–3.5 J cm−2) THz pulse peak power varies from 3 to 70MW with maximum at τ =9 ps.  相似文献   

7.
8.
An optical clock based on an Er3+ fiber femtosecond laser and a two-mode He–Ne/CH4 optical frequency standard (λ=3.39 μm) is realized. Difference-frequency generation is used to down convert the 1.5-μm frequency comb of the Er3+ femtosecond laser to the 3.4-μm range. The generated infrared comb overlaps with the He–Ne/CH4 laser wavelength and does not depend on the carrier–envelope offset frequency of the 1.5-μm comb. In this way a direct phase-coherent connection between the optical frequency of the He–Ne/CH4 standard and the radio frequency pulse repetition rate of the fiber laser is established. The stability of the optical clock is measured against a commercial hydrogen maser. The measured relative instability is 1×10−12 at 1 s and for averaging times less than 50 s it is determined by the microwave standard, while for longer times a drift of the He–Ne/CH4 optical standard is dominant.  相似文献   

9.
Q-switched operation of a room temperature Ho:YAP laser was resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 μm. The CW Ho:YAP laser generated 9.9 W of linearly output at 2119.03 nm with beam quality factor of M 2 ∼1.46 with respect to absorbed pump power of 19.16 W, corresponding to an optical-to-optical conversion efficiency of 51.7% and slope efficiency of 60.6%. Under Q-switched operation, the maximum output power of 9.8 W in relation to 10 kHz pulse repetition frequency (PRF) was obtained, however, the maximum peak power of 60 kW at the PRF of 5 kHz was demonstrated. At 5 kHz pulse energies of 1.92 mJ with pulse width of 32 ns was achieved.  相似文献   

10.
355 nm UV laser was obtained with a pulse width of less than 5 ns and a peak power at megawatt level by adopting the 808 nm pulse laser diode (LD) side-pumped ceramic Nd:YAG and BBO crystal electrooptical Q-switched. The single-pulse energy was measured to be 24.3 mJ with 4.86 ns pulse width and 5.11 MW peak power at a repetition rate of 1Hz under a 120 A pump current. Using a volume of beam splitting mirrors, wavelength outputs at 1064, 532, and 355 nm pulse laser was obtained simultaneously with a respective average output power of 656.6, 357.1, and 260.5 mW, the beam quality factor M 2 are (M x − 10642 = 5.83, M y − 10642 = 5.61), (M x − 5322 = 4.25, M y − 5322 = 4.08) and (M x − 3552 = 6.32, M y − 3552 = 6.15), corresponding to a conversion efficiency at 11% from 1064 to 355 nm.  相似文献   

11.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

12.
We reported a 30 W average output power 532 nm green laser with 5 ns pulsed duration working at 80–100 kHz generated by a hybrid MOPA system. The hybrid MOPA system consisted of a fiber amplifier and two solid-state amplifiers producing 77 W 1064 nm at pulse repetition rates of 80–100 kHz. The IR-to-green optical conversion efficiency was 44.7% at the working point of 100 kHz. The beam quality of green laser was measured better than M 2 < 1.6 in both orthogonal directions. Nanosecond 532 nm lasers with short pulsed duration could be practicable in silicon-based material processing in the Photovoltaic industry.  相似文献   

13.
By using both acousto-optic (AO) modulator and V3+:YAG saturable absorber, a diode-pumped doubly Q-switched a-cut Nd:GdVO4 laser at 1.34 μm is realized. The average output power and the pulse width for different AO repetition rate f have been measured. The experimental results show that the doubly Q-switched laser can compress the pulse width and improve the pulsed peak power in comparison to the singly Q-switched laser with AO or V3+:YAG saturable absorber. At the pump power 10.34 W and f = 10 kHz, the greatest pulse width compression ratio 72% and the highest peak power improvement 8.8 times have been obtained, respectively.  相似文献   

14.
Two methods of preparation of the devices for visualization of pulsed and continuous near-IR (near infrared) are described and the results of conversion of pulsed and continuous IR (800–1360 nm) laser radiation into the visible range of spectra (400–680 nm) by using a transparent substrate covered with the particles (including nanoparticles) of effective nonlinear materials of GaSe x S1 − x (0.2 ≤ x ≤ 0.8) are presented. Converted light can be detected in transmission or reflection geometry as a visible spot corresponding to the real size of the incident laser beam. Developed device structures can be used for checking if the laser is working or not, for optical adjustment, for visualization of distribution of laser radiation over the cross of the beam and for investigation of the content of the laser radiation. Low energy (power density) limit for visualization of the IR laser pulses with 2–3 ps duration for these device structures are: between 4.6–2.1 μJ (3 × 10−4−1 × 10−4 W/cm2) at 1200 nm; between 8.4–2.6 μJ (4.7 × 10−4−1.5 × 10−4 W/cm2) at 1300 nm; between 14.4–8.1 μJ (8.2 × 10−4–4.6 × 10−4 W/cm2) at 1360 nm. Threshold damage density is more than 10 MW/cm2 at λ = 1060 nm, pulse duration τ = 35 ps. The results are compared with commercially existing laser light visualizators.  相似文献   

15.
L. Zhang  L. Guo  B. Xiong  X. Yan  L. Sun  W. Hou  X. C. Lin  J. M. Li 《Laser Physics》2010,20(9):1798-1801
We report a LD side-pumped fundamental-mode (Mx2 = 1.35 and My2 = 1.27) passive Q-switched and mode-locked Nd:YAG laser based on a semiconductor saturable absorber mirror (SESAM). At a pump current of 12.5 A, the average output power of 5.68 W with 80 kHz repetition rate and 2 μs pulse width of the Q-switched envelope was generated. The repetition rate of the mode-locked pulse within the Q-switched envelope of 88 MHz was achieved.  相似文献   

16.
We first report a tunable repetition frequency passively Q-switched 2053 nm Tm,Ho:YLF laser by tuning the tilt angle of the Cr:ZnS saturable absorber. When the pump power is 1.4 W, the pulse repetition frequency can be tuned from 1.6 to 19.4 kHz by changing the position of Cr2+:ZnS saturable absorber along the cavity axis. When the Cr2+:ZnS saturable absorber is near the Tm,Ho:YLF crystal, the repetition frequency can be tuned from 0.8 to 4.0 kHz by changing the tilt angle of the Cr2+:ZnS saturable absorber, furthermore, the pulse width and the pulse energy are near constants of 1.7 μs and 3.5 μJ, respectively.  相似文献   

17.
    
Frequency-tunable generation by means of F 2 + and F 2 colour centers in a LiF crystal is reported. Colour centers were created by illuminating LiF crystals with electrons of 3 meV energy at the electron current density of 1 μA/cm2. The pumping source was a ruby laser with a peak power of 20 MW, a pulse duration of 20 ns, and a repetition rate of 1 Hz. The frequency tuning is obtained in the range of 0.88–1.25 μm. Discussed are the ways of pumping of colour centers and the possibility of lasing in the spectral region of 0.85 to 2 μm in the type of colour centers under investigation.  相似文献   

18.
We describe an open resonator, quasi sealed-off; 70cm cavity length CO2 laser with very high stability of power and frequency, which lases on 96 lines from 9R42 (2W) to 10P52 (5W) with a power of >11W on 9R20, 9P20, 10R20 and 10P20, plus on 18 hotband lines with ≈2W. This laser was used successfully to pump an FIR ring laser [1] enabling an FIR power stability of ΔP/P ≈ 10−4 by use of a simple PI control loop, thus demonstrating its superb frequency stability.  相似文献   

19.
Indium tin oxide (ITO) thin films prepared by the sol–gel method have been deposited by the dip-coating process on silica substrates. CO2 laser is used for annealing treatments. The electrical resistivity of sol–gel-derived ITO thin films decreased following crystallization after exposure to CO2 laser beam. The topological and electrical properties of the irradiated surfaces have been demonstrated to be strongly related to the coating solution and to the laser processing parameters. Optimal results have been obtained for 5 dip-coating layers film from 0.4 mol/l solution irradiated by 0.6 W/m2 laser power density. In this case, homogeneous and optically transparent traces were obtained with a measured sheet resistance of 1.46×102 Ω/□.  相似文献   

20.
Stimulated Brillouin scattering (STBS) and phase conjugation of CO2 laser radiation have been demonstrated experimentally for the first time in compressed xenon (59 atm at 21°C) located inside the low-Q cavity of this laser. The nonlinear medium was exposed to the action of counterpropagating focused multimode radiation beams. The difference between the frequencies of the longitudinal cavity modes was set at the frequency of the acoustic wave (v s=32.2±0.3 MHz) excited as a result of STBS by 9.584 μm radiation. The duration of the radiation pulse τ L was close to the acoustic phonon lifetime (τ L<τ ph≈3× 10−6s). The excitation of STBS was manifested experimentally as the locking of longitudinal modes, an increase in power and energy, and also an increase in the duration of the lasing pulse and a reduction in the divergence to the diffraction limit. Zh. éksp. Teor. Fiz. 116, 1941–1946 (December 1999)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号