首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
In this paper, we report an efficient method by high‐speed counter‐current chromatography for the first separation of four aromatic acids and two analogs with similar structures and polarities from Clematis akebioides. First, the ethyl acetate extract was treated by silica gel column chromatography to enrich the target compounds. And then the fraction with target compounds were purified by high‐speed counter‐counter chromatography using a two‐phase solvent system consisting of chloroform/acetonitrile/water (10:6:4, v/v). The results showed high‐speed counter‐current chromatography could be a powerful technology for the separation of compounds with similar structures and polarities. Besides, it was found acetonitrile could be a good methanol substitute when a chloroform/methanol/water system could not provide a good separation factor. This study provides a reference for the separation of compounds from Clematis akebioides.  相似文献   

2.
An off‐line 2D high‐speed counter‐current chromatography technique in preparative scale has been successfully applied to separate and purify the main compounds from the ethyl acetate extract of Desmodium styracifolium. A two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water at an optimized volume ratio of 1:2:1:2 v/v/v/v was used. Conventional high‐speed counter‐current chromatography was used as the first dimension, and the upper phase of the solvent system was used as the stationary phase in the head‐to‐tail elution mode at a flow rate of 2.0 mL/min and a rotation speed of 900 rpm. Recycling high‐speed counter‐current chromatography served as the second dimension to separate an impure fraction of the first dimension. A total of four well‐separated substances including vanillic acid ( 1 ), β‐sitosterol ( 2 ), formononetin ( 3 ), and aromadendrin ( 4 ) were obtained, and their purities and structures were identified by HPLC–MS and 1H NMR spectroscopy. The results illustrated that off‐line 2D high‐speed counter‐current chromatography is an effective way to isolate compounds in complex samples.  相似文献   

3.
Stilbenoids are the main components of leaves and stems of Pholidota chinensis. In the present investigation, high‐speed counter‐current chromatography was used for the separation and purification of two classes of stilbenoids, namely, bibenzyls and 9,10‐dihydrophenanthrenes, on a preparative scale from whole plants of P. chinensis with different solvent systems after silica gel column chromatography fractionation. n‐Hexane/ethyl acetate/methanol/water (1.2:1:1:0.8, v/v/v/v) was selected as the optimum solvent system to purify 1‐(3,4,5‐trimethoxyphenyl)‐1′,2′‐ethanediol ( 1 ), coelonin ( 2 ), 3,4′‐dihydroxy‐5,5′‐dimethoxybibenzyl ( 3 ), and 2,?7‐?dihydroxy‐?3,?4,?6‐?trimethoxy‐?9,?10‐?dihydrophenanthrene ( 4 ). While 2,7‐dihydroxy‐3,4,6‐trimethoxy‐?9,?10‐?dihydrophenanthrene ( 5 ), batatasin III ( 6 ), orchinol ( 7 ), and 3′‐O‐methylbatatasin III ( 8 ) were purified by n‐hexane/ethyl acetate/methanol/water (1.6:0.8:1.2:0.4, v/v/v/v). After the high‐speed counter‐current chromatography isolation procedure, the purity of all compounds was over 94% assayed by ultra high performance liquid chromatography. The chemical structure identification of all compounds was carried out by mass spectrometry and 1H and 13C NMR spectroscopy. To the best of our knowledge, the current investigation is the first study for the separation and purification of bibenzyls and 9,10‐dihydrophenanthrenes by high‐speed counter‐current chromatography from natural resources.  相似文献   

4.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and online isolation of the unstable compounds from Rosa damascene in a single extraction and separation operation in two stages. The solvent systems of SFE/HSCCC were optimized with the help of multiexponential function model. At the first stage, the upper phase of the solvent system of n‐butanol–tert‐butyl methyl ether–acetonitrile–0.1% aqueous TFA (1.7:1.0:0.8:4.0, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, and the target compounds were eluted with the corresponding lower phase to separate the hydrophobic compounds. At the second stage, the upper phase of the solvent system of n‐hexane–ethyl acetate–methanol–water (3.2:1.0:2.8:2.6, v/v/v/v) was used as both the SFE entrainer and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the moderate hydrophobic compounds. Six compounds including formononetin, delphinidin, cyaniding, 5,6,4′‐trihydroxy‐7,8‐dimethoxy flavone, 5,3′‐dihydroxy‐7,8‐dimethoxy flavone, and 5‐hydroxy‐6,7,8,3′,4′‐pentamethoxy flavone were successfully separated in one extraction–separation operation within 300 min. The targeted compounds were identified by MS and NMR spectroscopy. This research has opened up great prospects for industrial application of SFE/HSCCC to the extraction and separation of unstable compounds.  相似文献   

5.
An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography for the first time. pH‐zone‐refining counter‐current chromatography was performed with the solvent system composed of n‐hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high‐speed counter‐current chromatography with a solvent system composed of n‐hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n‐hexane/methyl tert‐butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β‐morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high‐performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones.  相似文献   

6.
In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high‐speed counter‐current chromatography were applied to separate and purify the caryophyllene oxide, 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two‐phase solvent system containing n‐hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high‐speed counter‐current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC‐MS, 1H‐NMR, and 13C‐NMR.  相似文献   

7.
Supercritical fluid extraction (SFE) coupled with high‐speed counter‐current chromatography (HSCCC) was successfully used for the extraction and on‐line isolation of the anthocyanidins from the petals of Chaenomeles sinensis in two stages. The SFE parameters were optimized by an orthogonal test, and the solvent systems of SFE and HSCCC were calculated and optimized with the help of a multiexponential function model. In the first stage, the lower phase of the solvent system of n‐butanol/tert‐butyl methyl ether/acetonitrile/0.1% aqueous TFA (0.715:1.0:0.134:1.592, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, after extraction, the extractants were pumped into HSCCC column, and then eluted with the corresponding upper phase to isolate the moderately hydrophobic compounds. In the second stage, the upper phase of the solvent system of n‐butanol/ethyl acetate/acetonitrile/0.1% aqueous TFA (1.348:1.0:0.605:2.156, v/v/v/v) was used as both the SFE modifier and the HSCCC stationary phase, followed by elution with the corresponding lower phase to separate the hydrophobic compounds. With the help of two‐stage SFE/HSCCC, six compounds including delphinidin‐3‐O‐glucoside (Dp3G), cyanidin‐3‐O‐glucoside (Cy3G), peonidin‐3‐O‐glucoside (Pn3G), delphinidin (Dp), peonidin (Pn), and malvidin (Mv) were successfully separated within 300 min. The targeted compounds were identified by UV spectrophotometry, MS, and NMR spectroscopy. This research has opened up great prospects for the industrial application of SFE–HSCCC for the automatic extraction and separation of unstable compounds.  相似文献   

8.
Macleaya cordata (Willd) R. Br. is a medicinal plant. The most important bioactive compounds of M. cordata are alkaloids that have many biological activities including antifungal, anti‐inflammatory, and antitumor. In this study, an ionic‐liquid‐modified high‐speed counter‐current chromatography method was established to obtain alkaloids from the fruits of M. cordata. The conditions of ionic‐liquid‐modified high‐speed counter‐current chromatography, including solvent systems, the content of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate [C4mim][BF4]), and the posttreatment of the ionic liquid, were investigated. Five alkaloids protopine, allocryptopine, sanguinarine, 8‐O‐demethylchelerythrine, and chelerythrine were separated from the extract of the fruits using a high speed counter‐current chromatography with two‐phase solvent system composed of dichloromethane/methanol/0.3 mol/L hydrochloric acid aqueous solution/[C4mim][BF4] (4:2:2:0.015, v/v). Their purities were 96.33, 95.56, 97.94, 96.22, and 97.90%, respectively. The results indicated that a small amount of ionic liquids as modifier of the two‐phase solvent system could shorten the separation time and improve the separation efficiency of the alkaloids from the fruits. The ionic‐liquid‐modified high‐speed counter‐current chromatography would provide a feasible way for highly effective separation of alkaloids from natural products.  相似文献   

9.
Nine compounds were successfully separated from Salvia plebeia R.Br. using two‐step high‐speed counter‐current chromatography with three elution modes. Elution–extrusion counter‐current chromatography was applied in the first step, while classical counter‐current chromatography and recycling counter‐current chromatography were used in the second step. Three solvent systems, n‐hexane/ethyl acetate/ethanol/water (4:6.5:3:7, v/v), methyl tert‐butyl ether/ethyl acetate/n‐butanol/methanol/water (6:4:1:2:8, v/v) and n‐hexane/ethyl acetate/methanol/water (5:5.5:5:5, v/v) were screened and optimized for the two‐step separation. The separation yielded nine compounds, including caffeic acid ( 1 ), 6‐hydroxyluteuolin‐7‐glucoside ( 2 ), 5,7,3′,4′‐tetrahydroxy‐6‐methoxyflavanone‐7‐glucoside ( 3 ), nepitrin ( 4 ), rosmarinic acid ( 5 ), homoplantaginin ( 6 ), nepetin ( 7 ), hispidulin ( 8 ), and 5,6,7,4′‐tertrahydroxyflavone ( 9 ). To the best of our knowledge, 5,7,3′,4′‐tetrahydroxy‐6‐methoxyflavanone‐7‐glucoside and 5,6,7,4′‐tertrahydroxyflavone have been separated from Salvia plebeia R.Br. for the first time. The purities and structures of these compounds were identified by high‐performance liquid chromatography, electrospray ionization mass spectrometry, 1H and 13C NMR spectroscopy. This study demonstrates that high‐speed counter‐current chromatography is a useful and flexible tool for the separation of components from a complex sample.  相似文献   

10.
The separation of minor compounds, especially those with similar polarities from a complex sample, remains challenging. In the proposed study, an effective method based on medium‐pressure liquid chromatography and recycling high‐speed counter‐current chromatography was developed for the enrichment and separation of three minor components from Dracocephalum tanguticum. The crude extract was directly introduced to medium‐pressure liquid chromatography for the enrichment of the three minor components. Based on high‐performance liquid chromatography analysis, the total content of these three compounds increased from 0.48% in the crude extract to 85.3% in the medium‐pressure liquid chromatography fraction. In addition, high‐speed counter‐current chromatography was employed to separate the enriched compounds using the solvent system hexane/ethyl acetate/methanol/water (1.18:8.82:1.18:8.82, v/v/v/v). As a result, compound 3 and a mixture of compounds 1 and 2 were obtained. In order to improve the resolution of compounds 1 and 2 while saving separation time, a recycling and heart‐cut mode was used. Finally, compounds 1 and 2 were obtained after five cycles. These compounds were identified as 3‐phenylethyl β‐d ‐glucopyranoside ( 1 ), tazettoside E ( 2 ), and cirsiliol‐4′‐glucoside ( 3 ). Compounds 1 and 2 were primarily separated from D. tanguticum. Moreover, the developed method provided a reference for the separation of minor components from the complex sample.  相似文献   

11.
Three polyacetylenes were isolated and purified from Platycodon grandiflorum A. DC for the first time by high‐speed counter‐current chromatography using a two‐phase solvent system composed of hexane/ethyl acetate/methanol/water (1:31:1:31, v/v/v/v) and high‐performance liquid chromatography with an Agilent ZORBAX® SB‐C18 column (4.6 mm × 150 mm, 5 μm). After separation by high‐speed counter‐current chromatography and high‐performance liquid chromatography, we obtained 3.5 mg of platetyolin A, 4.1 mg of platetyolin B, and 18.1 mg of lobetyolin with purities of 97.2, 96.7, and 96.9%, respectively. The purity of each compound was assessed by high‐performance liquid chromatography and the chemical structures were evaluated by high‐resolution electrospray ionization time‐of‐flight mass spectrometry and one‐ and two‐dimensional NMR spectroscopy. Among the isolated compounds, platetyolin A and platetyolin B are newly reported compounds.  相似文献   

12.
This study presents an efficient strategy for separation of three phenolic compounds with high molecular weight from the crude extract of Terminalia chebula Retz. by ultrasound‐assisted extraction and high‐speed counter‐current chromatography. The ultrasound‐assisted extraction conditions were optimized by response surface methodology and the results showed the target compounds could be well enriched under the optimized extraction conditions. Then the crude extract was directly separated by high‐speed counter‐current chromatography without any pretreatment using n‐hexane/ethyl acetate/methanol/water (1:7:0.5:3, v/v/v/v) as the solvent system. In 180 min, 13 mg of A, 18 mg of B, and 9 mg of C were obtained from 200 mg of crude sample. Their structures were identified as Chebulagic acid (A, 954 Da), Chebulinic acid (B, 956 Da), and Ellagic acid (C) by 1H NMR spectroscopy.  相似文献   

13.
Counter‐current chromatography is a chromatographic technique with a support‐free liquid stationary phase. In the present study, a successful application of linear gradient counter‐current chromatographic method for preparative isolation of bioactive components from the crude ethanol extract of Zanthoxylum planispinum was presented. The application of n‐hexane/ethyl acetate/methanol/water quaternary solvents, in terms of “HEMWat” or “Arizona” solvent families, in gradient elution mode was evaluated. Results indicated that slightly proportional changes of biphasic liquid systems provided the possibility of gradient elution in counter‐current chromatography, maintaining stationary phase retention in the column. With the selected quaternary solvent systems composed of n‐hexane/ethyl acetate/methanol/water (2:1:2:1 and 3:2:3:2, v/v), and optimized gradient programs, in total seven fractions were separated in 4.5 h. Most of the purified compounds could be obtained at the milligram level with over 80% purity. The present study indicated that the linear gradient counter‐current chromatographic approach possessed unique advantages in terms of separation efficiency, exhibiting great potential for the comprehensive separation of complex natural extracts.  相似文献   

14.
Triterpene acids were extracted from the epidermis of Poria cocos (Schw.) Wolf. These acids were found to inhibit the growth of lung cancer cells in vitro and in vivo. An efficient method for the preparative separation of antitumor triterpene acids was established that involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography. We used pH‐zone‐refining counter‐current chromatography to concentrate the triterpene acids using a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (3:7:5:5, v/v/v/v), trifluoroacetic acid (10 mM) was added to the upper phase as a retainer, and ammonia (10 mM) was added to the lower phase as an eluter. As a result, 200 mg concentrate of triterpene acids was obtained from 1.0 g of crude extract. The concentrate was further separated by conventional high‐speed counter‐current chromatography using a solvent system composed of petroleum ether/ethyl acetate/methanol/water (0.8:1.2:1.2:0.9, v/v), yielding 50 mg of poricoic acid A and 5 mg of poricoic acid B from 120 mg concentrate, respectively. The inhibitory activity of the major compound on lung A549 cells was examined and poricoic acid A was found to significantly inhibit the growth of A 549 cells.  相似文献   

15.
An efficient combination strategy based on high‐speed shear dispersing emulsifier technique and high‐performance countercurrent chromatography was developed for on‐line extraction and isolation of carotenoids from the fruits of Lycium barbarum. In this work, the high‐speed shear dispersing emulsifier technique has been employed to extract crude extracts using the upper phase of high‐performance countercurrent chromatography solvent system composed of n‐hexane?dichloromethane?acetonitrile (10:4:6.5, v/v) as the extraction solvent. At the separation stage, the high‐performance counter‐current chromatography process adopts elution–extrusion mode and the upper phase of the solvent system as stationary phase (reverse‐phase mode). As a result, three compounds including zeaxanthin, zeaxanthin monopalmitate, and zeaxanthin dipalmitate with purities of 89, 90, and 93% were successfully obtained in one extraction‐separation operation within 120 min. The targeted compounds were analyzed and identified by high‐performance liquid chromatography, mass spectrometry, and NMR spectroscopy. The results indicated that the present on‐line combination method could serve as a simple, rapid, and effective way to achieve weak polar and unstable compounds from natural products.  相似文献   

16.
Three hydrolyzable tannins, geraniin, corilagin and gallic acid, main active components of Geranium wilfordii Maxim, have been separated and purified in one‐step by both reversed‐phase and normal‐phase high‐speed counter‐current chromatography. Gallic acid, corilagin and geraniin were purified from 70% aqueous acetone extract of G. wilfordii Maxim with solvent system n‐hexane–ethyl acetate–methanol–acetic acid–water (1:10:0.2:0.2:20) by reversed‐phase high‐speed counter‐current chromatography at purities of 94.2, 91.0 and 91.3%, at yields of 89.3, 82.9 and 91.7%, respectively. Gallic acid, corilagin and geraniin were purified with solvent system n‐hexane–ethyl acetate–methanol–acetic acid–water (0.2:10:2:1:5) by normal‐phase high‐speed counter‐current chromatography at purities of 85.9, 92.2 and 87.6%, at yields of 87.4, 94.6 and 94.3%, respectively. It was successful for both reversed‐phase and normal‐phase high‐speed counter‐current chromatography to separate high‐polarity of low‐molecular‐weight substances.  相似文献   

17.
This study presents an efficient strategy based on liquid–liquid extraction, high‐speed counter‐current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid–liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe‐emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high‐speed counter‐current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe‐emodin, physcione, and chrysophanol.  相似文献   

18.
High‐speed counter‐current chromatography was applied to the separation of five diketoperazines from the marine Alternaria alternate HK‐25 for the first time using one‐step elution method with a pair of two‐phase solvent systems composed of petroleum ether/ethyl acetate/methanol/water (5.5:11:5:7, v/v). Where 151.6 mg of crude sample yielded five diketoperazines, 12,13‐dihydroxy‐fumitremorgin C ( 1 ), gliotoxin ( 2 ), demethoxyfum itremorgin C ( 3 ), bisdethiobis(methylthio)gliotoxin ( 4 ), fumitremorgin C ( 5 ), and the purities of all compounds were above 94% as determined by high‐performance liquid chromatography. The structures of these compounds were identified by 1H and 13C NMR spectroscopy. These results showed that high‐speed counter‐current chromatography can provide a feasible way for highly effective preparation of marine natural products, which ensured the supple of numerous samples for drug development.  相似文献   

19.
Sugarcane rind contains some functional phenolic acids. The separation of these compounds from sugarcane rind is able to realize the integrated utilization of the crop and reduce environment pollution. In this paper, a novel protocol based on interfacing online solid‐phase extraction with high‐speed counter‐current chromatography (HSCCC) was established, aiming at improving and simplifying the process of phenolic acids separation from sugarcane rind. The conditions of online solid‐phase extraction with HSCCC involving solvent system, flow rate of mobile phase as well as saturated extent of absorption of solid‐phase extraction were optimized to improve extraction efficiency and reduce separation time. The separation of phenolic acids was performed with a two‐phase solvent system composed of butanol/acetic acid/water at a volume ratio of 4:1:5, and the developed online solid‐phase extraction with HSCCC method was validated and successfully applied for sugarcane rind, and three phenolic acids including 6.73 mg of gallic acid, 10.85 mg of p‐coumaric acid, and 2.78 mg of ferulic acid with purities of 60.2, 95.4, and 84%, respectively, were obtained from 150 mg sugarcane rind crude extracts. In addition, the three different elution methods of phenolic acids purification including HSCCC, elution–extrusion counter‐current chromatography and back‐extrusion counter‐current chromatography were compared.  相似文献   

20.
Parishins are high‐polarity and major bioactive constituents in Gastrodia elata Blume. In this study, the effect of several inorganic salts on the partition of parishins in two‐phase solvent systems was investigated. Adding ammonium sulfate, which has a higher solubility in water, was found to significantly promote the partition of parishins in the upper organic polar solvents. Based on the results, a two‐phase solvent system composed of butyl alcohol/acetonitrile/near‐saturated ammonium sulfate solution/water (1.5:0.5:1.2:1, v/v/v/v) was used for the purification of parishins by high‐speed counter‐current chromatography. Fractions obtained from high‐speed counter‐current chromatography were subjected to semi‐preparative high‐performance liquid chromatography to remove salt and impurities. As a result, parishin E (6.0 mg), parishin B (7.8 mg), parishin C (3.2 mg), gastrodin (15.3 mg), and parishin A (7.3 mg) were isolated from water extract of Gastrodia elata Blume (400 mg). These results demonstrated that adding inorganic salt that has high solubility in water to the two‐phase solvent system in high‐speed counter‐current chromatography was a suitable approach for the purification of high‐polarity compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号