首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, selective and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed to determine meloxicam in beagle dog plasma. Sample pretreatment involved a one‐step protein precipitation with methanol of 0.1 mL plasma. Analysis was performed on a Venusil ASB‐C18 column with mobile phase consisting of methanol–water (containing 0.1% formic acid) (75:25, v/v). The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via electrospray ionization source. Each plasma sample was chromatographed within 4.1 min. The linear calibration curves for meloxicam was obtained in the concentration range of 10.3–4.12 × 103 ng/mL (r ≥ 0.99). The intra‐ and inter‐day precisions (relative standard deviation) were ≤ 15%, and accuracy (relative error) was within ±7.3%. The method herein described was fully validated and successfully applied to the pharmacokinetic study of meloxicam tablets in beagle dog.  相似文献   

2.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for the determination of febuxostat in dog plasma. Using paclitaxel as an internal standard (IS), a simple liquid–liquid extraction method with ethyl acetate was adopted for plasma sample pretreatment. Separation was carried out on an Acquity UPLC BEH C18 column with a mobile phase consisting of acetonitrile and water (containing 0.2% formic acid). The assay was linear in the concentration ranged from 5 to 5000 ng/mL with a lower limit of quantification of 5 ng/mL for febuxostat. The single run analysis was as short as 2.0 min. Finally, the developed method was successfully applied to the pharmacokinetic study of febuxostat tablets following oral administration at a single dose of 40 mg in beagle dogs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, selective and sensitive liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determining bencycloquidium bromide (BCQB) in beagle dog plasma. The plasma sample was deproteinized with methanol which contained l‐ethyl‐bencycloquidium bromide as internal standard, and supernantant was assayed by LC‐MS/MS. The chromatographic separation was performed on a Phenomenex C18 column (100 × 2.0 mm, i.d., 3.0 μm) with a gradient programme mobile phase consisting of methanol and ammonium acetate (5 mm) containing 0.15% acetic acid and at a flow rate of 0.3 mL/min. Electrospray ionization in positive ion mode and selective reaction monitoring was used for the quantification of BCQB with a monitored transitions m/z 330.2 → 142.1 for BCQB and m/z 344.2 → 126.2 for IS. Validation results indicated that the lower limit of quantification was 0.05 ng/mL and the assay exhibited a linear range of 0.05–10.0 ng/mL and gave a correlation coefficient of 0.9998. The intra‐ and inter‐run precisions of the assay were 1.7–4.6 and 3.2–15.6%, respectively, and the intra‐ and inter‐day accuracies were ?8.8 to 1.1 and ?5.0 to 4.6%, respectively. The developed method was applied for the pharmacokinetic study of BCQB in beagle dogs following a single intranasal dose. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In order to accurately investigate the preclinical pharmacokinetics of (R)‐(+)‐rabeprazole sodium injection, a reliable high‐performance liquid chromatography (HPLC) method was developed using a Chiral‐AGP column to prove that there is no chiral bioconversion of (R)‐(+)‐rabeprazole to (S)‐(?)‐rabeprazole in beagle dogs after single intravenous administration of (R)‐(+)‐rabeprazole sodium injection. An HPLC–tandem mass spectrometry (HPLC‐MS/MS) method for analysis of (R)‐(+)‐rabeprazole was developed and validated, and used to acquire the pharmacokinetic parameters in beagle dogs. (R)‐(+)‐Rabeprazole and internal standard omeprazole were extracted from plasma samples by protein precipitation and separated on a C18 column using methanol–5 mm ammonium acetate as mobile phase. Detection was performed using a turbo‐spray ionization source and mass spectrometric positive multi‐reaction monitoring mode. The linear relationship was achieved in the range from 2.5 to 5000 ng/mL. The method also afforded satisfactory results in terms of sensitivity, specificity, precision, accuracy and recovery as well as the stability of the analyte under various conditions, and was successfully applied to a preclinical pharmacokinetic study in beagle dogs after single intravenous administrations of (R)‐(+)‐rabeprazole sodium injection at 0.33, 2 and 6 mg/kg. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method has been developed and validated for the determination of asperosaponin VI in beagle dog plasma using glycyrrhizic acid as the internal standard (IS). Plasma samples were simply pretreated with methanol for deproteinization. Chromatographic separation was performed on a Hedera ODS‐2 column using mobile phase of methanol–10 mm ammonium acetate buffer solution containing 0.05% acetic acid (71:29, v/v) at a flow rate of 0.38 mL/min. Asperosaponin VI and the IS were eluted at 2.8 and 1.9 min, respectively, ionized in negative ion mode, and then detected by multiple reaction monitoring. The detection used the transitions of the deprotonated molecules at m/z 927.5 → 603.4 for asperosaponin VI and m/z 821.4 → 645.4 for glycyrrhizic acid (IS). The assay was linear over the concentration range of 0.15–700 ng/mL and was successfully applied to a pilot pharmacokinetic study in beagle dogs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A simple, rapid and high sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the determination of neostigmine in small‐volume beagle dog plasma was developed to assess the plasma pharmacokinetics of neostigmine. After protein precipitation in a Sirocco 96‐well filtration plate, the filtrate was directly injected into the LC‐MS/MS system. The analytes were separated on a Hanbon Hedera CN column (100 × 4.6 mm, 5 µm) with a mobile phase composed of methanol–water (60:40, v/v) and the water containing 0.01% formic acid at a flow rate of 0.6mL/min, with a split ratio of 1:1 flowing 300 μL into the mass spectrometer. The run time was 3 min. Detection was accomplished by electrospray ionization source in multiple reactions monitoring mode with the precursor‐to‐product ion transitions m/z 223.0 → 72.0 and 306.0 → 140.0 for neostigmine and anisodamine (internal standard), respectively. The method was sensitive with a lower limit of quantitation of 0.1 ng/mL, and good linearity in the range 0.1–100ng/mL for neostigmine (r ≥ 0.998). All the validation data, such as accuracy, intra‐run and inter‐run precision, were within the required limits. The method was successfully applied to pharmacokinetic study of neostigmine methylsulfate injection in beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Oroxylin A, obtained from the root of Scutellaria baicalensis Georgi, is a flavonoid with antitumor and other pharmacological activities. Our previous studies showed for the first time that it is mainly metabolized to oroxylin A sodium sulfonate by sulfotransferase enzymes in beagle dogs. In this study, rapid, universal, selective, and robust ultra‐high‐performance liquid chromatography–tandem mass spectrometry methods were established and fully validated to quantitatively detect oroxylin A, oroxylin A 7‐O‐glucuronide, and oroxylin A sodium sulfonate in beagle dog plasma. The quantitative analysis for oroxylin A sodium sulfonate was reported for the first time. Plasma samples were processed with acetonitrile, a universal protein precipitant. Gradient elution was performed to resolve carryover effects and to achieve separation efficiency and sufficient chromatographic retention. The linear relationships of oroxylin A, oroxylin A 7‐O‐glucuronide, and oroxylin A sodium sulfonate in plasma were in the range of 2.0–500.0, 5.0–500.0, and 1.881–940.5 ng/mL, respectively. The assay method was successfully applied to pharmacokinetic study. This is the first paper that reveals the pharmacokinetic profile of oroxylin A, oroxylin A 7‐O‐glucuronide, and oroxylin A sodium sulfonate after single‐dose intravenous and oral administration of Oroxylin A in beagle dogs.  相似文献   

9.
Lansoprazole, a selective proton pump inhibitor, has a chiral benzimidazole sulfoxide structure and is used for the treatment of gastric acid hypersecretory related diseases. To investigate its stereoselective pharmacokinetics, a column‐switching liquid chromatography with tandem mass spectrometry method was developed for the determination of lansoprazole enantiomers in dog plasma using (+)‐pantoprazole as an internal standard. After a simple protein precipitation procedure with acetonitrile, matrix components left behind after sample preparation were further eliminated from the sample by reversed‐phase chromatography on a C18 column. The fluent was fed to a chiral column for the separation of lansoprazole enantiomers. Baseline separation of lansoprazole enantiomers was achieved on a Chiralcel OZ‐RH column using acetonitrile/0.1% formic acid in water (35:65, v/v) as the mobile phase at 40°C. The linearity of the calibration curves ranged from 3 to 800 ng/mL for each enantiomer. Intra‐ and inter‐day precisions ranged from 2.1 to 7.3% with an accuracy of ±1.7% for (+)‐lansoprazole, and from 1.6 to 6.9% with an accuracy of ±3.5% for (–)‐lansoprazole, respectively. The validated method was successfully applied for the stereoselective pharmacokinetic study of lansoprazole in beagle dog after intravenous infusion.  相似文献   

10.
A fast, selective, and quantitative ultra‐fast liquid chromatography with tandem mass spectrometry method has been developed and validated for the simultaneous quantitation of polygalaxanthone III, ginsenoside Rb1, ginsenoside Rd, ginsenoside Re, and ginsenoside Rg1 in the plasma of rat and beagle dog after oral administration of Kai‐Xin‐San. After addition of the internal standard, salidroside, the plasma samples were extracted by liquid–liquid extraction and separated on a Venusil MP C18 column with methanol/0.01% acetic acid water as mobile phase. The tandem mass spectrometric detection was performed in the multiple reaction monitoring with turbo ion spray source in a switching ionization mode. The method was examined, and found to be precise and accurate with the linearity range of the compounds. The intra‐ and interday precision and accuracy of the analytes were well within acceptance criteria (±15%). The mean extraction recoveries of analytes and internal standard were all >75.0%. The validated method has been successfully applied to comparing pharmacokinetic profiles of analytes in rat and beagle dog plasma. The results indicated that no significant differences were observed in pharmacokinetic parameters of ginsenoside Rg1, while the others had significant differences, which may due to the different mechanisms of absorption and metabolism.  相似文献   

11.
In this study, a rapid and reliable ultra‐fast liquid chromatography–tandem mass spectrometry method was developed and validated for the simultaneous determination of eight active ingredients, including astragaloside IV, ononin, tanshinol, protocatechualdehyde, protocatechuic acid, salvianolic acid D, rosmarinic acid and ginsenoside Rg1, in rat plasma. The plasma samples were pretreated by protein precipitation with acetonitrile. Chromatographic separation was performed on a Waters Acquity UPLC® BEH C18 column (1.7 μm particles, 2.1 × 100 mm). The mobile phase consisted of 0.1% aqueous formic acid (A)–acetonitrile with 0.1% formic acid (B) at a flow rate of 0.4 mL/min. Quantification was performed on a triple quadruple tandem mass spectrometry with electrospray ionization by multiple reaction monitoring both in the negative and in the positive ion mode. The lower limit of quantification of tanshinol was 2.0 ng/mL and the others were 5.0 ng/mL. The extraction recoveries, matrix effects, intra‐ and inter‐day precision and accuracy of eight tested components were all within acceptable limits. The validated method was successfully applied to the pharmacokinetic study of the eight active constituents after intragastric administration of three doses (1.0, 3.0, 6.0 g/kg body weight) of Qishen Yiqi Dripping Pills to rats.  相似文献   

12.
Topotecan (TPT) is an important anti‐cancer drug that inhibits topoisomerase I. A sensitive and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method that potentially determines TPT in beagle dog plasma is needed for a bioequivalence study of TPT formulations. We developed and validated LC‐MS/MS to evaluate TPT in beagle dog plasma in terms of specificity, linearity, precision, accuracy, stability, extraction recovery and matrix effect. Plasma samples were treated with an OstroTM sorbent plate (a robust and effective tool) to eliminate phospholipids and proteins before analysis. TPT and camptothecin (internal standard) were separated on an Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 50 mm) with 0.1% formic acid and methanol as the mobile phase at a flow rate of 0.25 mL/min. TPT was analyzed using positive ion electrospray ionization in multiple‐reaction monitoring mode. The obtained lower limit of quantitation was 1 ng/mL (signal‐to‐noise ratio > 10). The standard calibration curve for TPT was linear (correlation coefficient > 0.99) at the concentration range of 1–400 ng/mL. The intra‐day and inter‐day precision, accuracy, stability, extraction recovery and matrix effect of TPT were within the acceptable limits. The validated method was successfully applied in a bioequivalence study of TPT in healthy beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
A highly sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of limonin in beagle dog plasma using nimodipine as internal standard. The analyte and internal standard (IS) were extracted with ether followed by a rapid isocratic elution with 10 mm ammonium acetate buffer–methanol (26:74, v/v) on a C18 column (150 × 2.1 mm i.d.) and subsequent analysis by mass spectrometry in the multiple reaction monitoring mode. The precursor to product ion transitions of m/z 469.4 → 229.3 and m/z 417.2 → 122.0 were used to measure the analyte and the IS. The assay was linear over the concentration range of 0.625–100 ng/mL for limonin in dog plasma. The lower limit of quantification was 0.312 ng/mL and the extraction recovery was >90.4% for limonin. The inter‐ and intra‐day precision of the method at three concentrations was less than 9.9%. The method was successfully applied to pharmacokinetic study of limonin in dogs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and specific liquid chromatography electrospray ionization–mass spectrometry method for determination of 1,4‐dimethylpyridinium (1,4‐DMP) in rat plasma has been developed and validated. Chromatography was performed on an Aquasil C18 analytical column (4.6 × 150 mm, 5 µm, Thermo Scientific, Rockford, IL, USA) with isocratic elution using a mobile phase containing acetonitrile and water with an addition of 0.1% of formic acid. Detection was achieved by an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 2000 triple quadrupole mass spectrometer. Electrospray ionization was used for ion production. The limit of detection in the single ion monitoring mode was found to be 10 ng/mL. The limit of quantification was 50 ng/mL. The precision and accuracy for both within‐day and between‐day determination of 1,4‐dimethylpyridinium was 2.4–7.56 and 90.93–111.48%. The results of this analytical method validation allow pharmacokinetic studies to be carried out in rats. The method was used for the pilot study of the pharmacokinetic behavior of 1,4‐DMP in rats after intravenous administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Nifedipine is a dihydropyridine calcium channel blocker used widely in the management of hypertension and other cardiovascular disorders. In this work, a simple, rapid and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated to determine nifedipine in dog plasma using nimodipine as the internal standard. Chromatographic separation was carried out on a C8 column. The mobile phase consisted of a mixture of acetonitrile, water and formic acid (60:40:0.2, v/v/v) at a flow rate of 0.5 mL/min. Detection was performed on a triple quadrupole tandem mass spectrometer in selected reaction monitoring mode via an atmospheric pressure chemical ionization source. The method has a lower limit of quantification of 0.20 ng/mL with consumption of plasma as low as 0.05 mL. The linear calibration curves were obtained in the concentration range of 0.20–50.0 ng/mL (r = 0.9948). The recoveries of the liquid extraction method were 74.5–84.1%. Intra‐day and inter‐day precisions were 4.1–8.8 and 6.7–7.4%, respectively. The quantification was not interfered with by other plasma components and the method was applied to determine nifedipine in plasma after a single oral administration of two controlled‐release nifedipine tablets to beagle dogs. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A rapid, sensitive and selective liquid chromatography–tandem mass spectrometry method for the detection of tandospirone (TDS) and its active metabolite 1‐[2‐pyrimidyl]‐piperazine (1‐PP) in Sprague–Dawley rat plasma is described. It was employed in a pharmacokinetic study. These analytes and the internal standards were extracted from plasma using protein precipitation with acetonitrile, then separated on a CAPCELL PAK ADME C18 column using a mobile phase of acetonitrile and 5 mm ammonium formate acidified with formic acid (0.1%, v/v) at a total flow rate of 0.4 mL/min. The detection was performed with a tandem mass spectrometer equipped with an electrospray ionization source. The method was validated to quantify the concentration ranges of 1.000–500.0 ng/mL for TDS and 10.00–500.0 ng/mL for 1‐PP. Total time for each chromatograph was 3.0 min. The intra‐day precision was between 1.42 and 6.69% and the accuracy ranged from 95.74 to 110.18% for all analytes. Inter‐day precision and accuracy ranged from 2.47 to 6.02% and from 98.37 to 105.62%, respectively. The lower limits of quantification were 1.000 ng/mL for TDS and 10.00 ng/mL for 1‐PP. This method provided a fast, sensitive and selective analytical tool for quantification of tandospirone and its metabolite 1‐PP in plasma necessary for the pharmacokinetic investigation.  相似文献   

17.
Shenkang injection is a traditional Chinese formula with good curative effect on chronic renal failure. In this paper, a novel, rapid and sensitive ultra‐high‐performance liquid chromatography coupled with Q Exactive hybrid quadrupole Orbitrap high‐resolution accurate mass spectrometry was developed and validated for simultaneous determination of seven bioactive constituents of Shenkang injection in rat plasma and tissues after intravenous administration. Acetonitrile was used as a protein precipitation agent in biological samples disposal with carbamazepine as internal standard. The chromatographic separation was carried out on a C18 column with a gradient mobile phase consisting of acetonitrile and water (containing 0.1% formic acid). The MS analysis was performed in the full‐scan positive and negative ion mode. The lower limits of quantification for the seven analytes in rat plasma and tissues were 0.1–10 ng/mL. The validated method was successfully applied to tissue distribution and pharmacokinetic studies of Shenkang injection after intravenous administration. The results of the tissue distribution study showed that the high concentrations of seven constituents were primarily in the kidney tract. This is the first report of the application of Q‐Orbitrap with full‐scan mass spectrometry in tissue distribution and pharmacokinetic studies of Shenkang injection.  相似文献   

18.
A simple and sensitive liquid chromatography–tandem mass spectrometry method was developed for the simultaneous determination of chebulinic acid and chebulagic acid in rat plasma and tissues and well used in the pharmacokinetic and tissue distribution studies after intraperitoneal injection administration. Samples were processed with methanol by protein precipitation, and chromatographic separation was performed on an Agilent Zorbax SB‐C18 column (50 × 2.1 mm, 1.8 μm) with a mobile phase consisting of methanol and water containing 0.1% formic acid (60:40, v/v). Quantification was performed by selected reaction monitoring with m/z 977.1 → 806.8 for chebulagic acid, m/z 979.0 → 808.7 for chebulinic acid and m/z 851.2 → 704.9 for the internal standard. Good linearity was observed over their respective concentration range. The pharmacokinetic study showed that both compounds reached their peak concentration values (605.8 ± 35.6 ng/mL for chebulinic acid and 1327.1 ± 118.6 ng/mL for chebulagic acid) at the same time of 0.9 h following intraperitoneal injection administration. The two compounds could be detected in blood‐abundant tissues. The kidney had the highest concentrations (462.6 ± 138.5 ng/g for chebulinic acid and 1651.7 ± 167.7 ng/g for chebulagic acid) at 1 h post‐dose, followed by the heart, liver, spleen and lung.  相似文献   

19.
Damage of blood–brain barrier is a common result of traumatic brain injury. This damage can open the blood–brain barrier and allow drug passage. An ultraperformance liquid chromatography with tandem mass spectrometry method was established to determine the concentration of rhein in the biofluids (plasma and cerebrospinal fluid) of patients with a compromised blood–brain barrier following traumatic brain injury after rhubarb administration. Furthermore, the pharmacokinetic profiles were analyzed. A triple‐quadruple tandem mass spectrometer with electrospray ionization was used for rhein detection. The mass transition followed was m/z 283.06→239.0. The calibration curve was linear in the concentration range of 10–8000 ng/mL for the biofluids. The intra‐ and interday precisions were less than 10%. The relative standard deviation of recovery was less than 15% in biological matrices. The pharmacokinetic data showed that rhein was rapidly transported into biofluids, and exhibited a peak concentration 1 h after rhubarb administration. The elimination rate of rhein was slow. The AUCcerebrospinal fluid/AUCplasma (AUC is area under curve) of rhein was approximately 17%, indicating that portions of rhein could pass the impaired blood–brain barrier. The method was successfully applied to quantify rhein in the biofluids of all patients. The data presented can help to guide clinical applications of rhubarb for treating traumatic brain injury.  相似文献   

20.
A high‐throughput, rapid, sensitive, environmentally friendly, and economical supercritical fluid chromatography with triple quadruple mass spectrometry method was established and validated for the first time to determine a cerebral stroke treatment drug named 3‐n‐butylphthalide in dog plasma. Plasma samples were prepared by protein precipitation with methanol and the analytes were eluted on an ACQUITY UPC2TM HSS‐C18 SB column (3 × 100 mm, 1.8 μm) maintained at 50°C. The mobile phase comprised supercritical carbon dioxide/methanol (90:10, v/v) at a flow rate of 1.5 mL/min, the compensation solvent was methanol at a flow rate of 0.2 mL/min and the total run time was 1.5 min per sample. The detection was carried out on a tandem mass spectrometer with an electrospray ionization source. Calibration curves were linear over the concentration range of 1.02–1021.00 ng/mL (r2 ≥ 0.993) with the lower limit of quantification of 1.02 ng/mL. The intra‐ and inter‐day precision values were below 15% and the accuracy was from 97.90 to 103.70% at all quality control levels. The method was suitable for a pharmacokinetic study of 3‐n‐butylphthalide in beagle dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号