首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The ambidentate character of dimethyl sulfoxide, already known for dirhodium carboxylates, has been remarkably manifested in new ways. Three novel complexes of dirhodium(II) tetra(trifluoroacetate) with the DMSO ligand, namely, [Rh2(O2CCF3)4]m(DMSO)n with m:n = 7:8 (1), 1:1 (2), and 3:2 (3), have been obtained by deposition from the vapor phase, and their crystal structures have been determined by X-ray crystallography. The crystallographic parameters are as follows: for 1, monoclinic space group P2(1)/c with a = 28.261(2) A, b = 16.059(4) A, c = 17.636(2) A, beta = 92.40(4) degrees, and Z = 2; for 2, triclinic space group P1 with a = 8.915(2) A, b = 10.592(2) A, c = 11.916(2) A, alpha = 84.85(1) degrees, beta = 88.86(1) degrees, and gamma = 65.187(8) degrees, and Z = 2; and for 3, triclinic space group P1 with a = 8.876(2) A, b = 9.017(2) A, c = 19.841(3) A, alpha = 101.91(2) degrees, beta = 97.144(8) degrees, gamma = 100.206(9) degrees, and Z = 1. In the oligomeric molecule of 1, six DMSO ligands bridge seven dirhodium tetra(trifluoroacetate) units in a bidentate fashion via S and O atoms, and two additional DMSO molecules terminate the chain. In the structure of the monoadduct Rh2(O2CCF3)4(DMSO) (2), the dirhodium blocks are bridged through the O atoms of DMSO ligands, forming a one-dimensional polymeric chain. Compound 3 also has an infinite chain structure with the molecules of dimethyl sulfoxide acting in a bidentate mu-DMSO-S,O mode. Every second DMSO molecule is missing in 3, so that two of every three Rh2(O2CCF3)4 units are associated through the O atoms of carboxylate groups to give the overall composition [Rh2(O2CCF3)4]3(DMSO)2.  相似文献   

2.
The structures and magnetic properties of self-assembled copper(II) clusters and grids with the "tritopic" ligands 2poap (a), Cl2poap (b), m2poap (c), Cl2pomp (d), and 2pomp (e) are described [ligands derived by reaction of 4-R-2,6-pyridinedicarboxylic hydrazide (R = H, Cl, MeO) with 2-pyridinemethylimidate (a-c, respectively) or 2-acetylpyridine (d, R = Cl; e, R = H)]. Cl2poap and Cl2pomp self-assemble with Cu(NO(3))(2) to form octanuclear "pinwheel" cluster complexes [Cu(8)(Cl2poap-2H)(4)(NO(3))(8)].20H(2)O (1) and [Cu(8)(Cl2pomp-2H)(4)(NO(3))(8)].15H(2)O (2), built on a square [2 x 2] grid with four pendant copper arms, using "mild" reaction conditions. Similar reactions of Cl2pomp and 2pomp with Cu(ClO(4))(2) produce pinwheel clusters [Cu(8)(Cl2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8).7H(2)O (3) and [Cu(8)(2pomp-2H)(4)(H(2)O)(8)](ClO(4))(8) (4), respectively. Heating a solution of 1 in MeOH/H(2)O produces a [3 x 3] nonanuclear square grid complex, [Cu(9)(Cl2poap-H)(3)(Cl2poap-2H)(3)](NO(3))(9).18H(2)O (5), which is also produced by direct reaction of the ligand and metal salt under similar conditions. Reaction of m2poap with Cu(NO(3))(2) produces only the [3 x 3] grid [Cu(9)(m2poap-H)(2)(m2poap-2H)(4)](NO(3))(8).17H(2)O (6) under similar conditions. Mixing the tritopic ligand 2poap with pyridine-2,6-dicarboxylic acid (picd) in the presence of Cu(NO(3))(2) produces a remarkable mixed ligand, nonanuclear grid complex [Cu(9)(2poap-H)(4)(picd-H)(3)(picd-2H)](NO(3))(9).9H(2)O (7), in which aromatic pi-stacking interactions are important in stabilizing the structure. Complexes 1-3 and 5-7 involve single oxygen atom (alkoxide) bridging connections between adjacent copper centers, while complex 4 has an unprecedented mixed micro-(N-N) and micro-O metal ion connectivity. Compound 1 (C(76)H(92)N(44)Cu(8)O(50)Cl(4)) crystallizes in the tetragonal system, space group I, with a = 21.645(1) A, c = 12.950(1) A, and Z = 2. Compound 2 (C(84)H(88)N(36)O(44)Cl(4)Cu(8)) crystallizes in the tetragonal system, space group I, with a = 21.2562(8) A, c = 12.7583(9) A, and Z = 2. Compound 4 (C(84)H(120)N(28)O(66)Cl(8)Cu(8)) crystallizes in the tetragonal system, space group I4(1)/a, with a = 20.7790(4) A, c = 32.561(1) A, and Z = 4. Compound 7(C(104)H(104)N(46)O(56)Cu(9)) crystallizes in the triclinic system, space group P, with a = 15.473(1) A, b = 19.869(2) A, c = 23.083(2) A, alpha = 88.890(2) degrees, beta = 81.511(2) degrees, gamma = 68.607(1) degrees, and Z = 2. All complexes exhibit dominant intramolecular ferromagnetic exchange coupling, resulting from an orthogonal bridging arrangement within each polynuclear structure.  相似文献   

3.
A new copper(II) acetate, [Na(2)Cu(CH(3)COO)(4)(H(2)O)].H(2)O (1), has been crystallized from an aqueous solution containing sodium acetate and copper(II) acetate monohydrate in a 4:1 ratio and the structure determined by X-ray crystallography. 1 crystallizes in the monoclinic space group P2(1)/c, with a = 16.638(3) A, b = 11.781(2) A, c = 15.668(3) A, beta = 90.11(3) degrees, V = 3071.0(11) A(3), and Z = 4. In the asymmetric unit, sodium ions bridge two crystallographically unique square planar [Cu(CH(3)COO)(4)](2-) units to their symmetry-generated neighbors to form corrugated 2D sheets of Na(2)Cu(CH(3)COO)(4), which are held together by H-bonding interactions involving the waters of crystallization. In contrast, the structures of known sodium copper acetates are better described as 3D frameworks. The metal centers are bridged by a number of acetates in novel coordination modes. The square planar Cu(II) geometry generated by oxygen atoms from four different acetates is an unexpected feature given the weak ligand field provided by the acetate ligands.  相似文献   

4.
Crystal structure analyses are reported for anhydrous copper(II) hexafluoroacetylacetonate (Cu(hfac)(2)) and for two of its hydrates. The anhydrous compound (Cu(hfac)(2), 1: P1; at 100 K, a = 5.428(1), b = 5.849(1), c = 11.516(3) A; alpha = 81.47(2), beta = 74.57(2), gamma = 86.96(2) degrees; Z = 1) contains centrosymmetric square-planar complexes with close intermolecular Cu.F contacts. The geometry of the complex is similar to that previously reported for Cu(hfac)(2).toluene. The monoaquo compound (Cu(hfac)(2)(H(2)O), 2: P2(1)/c; at 100 K, a = 10.8300(8), b = 6.5400(6), c = 21.551(3) A; beta = 90.282(8) degrees; Z = 4) consists of square-pyramidal molecules with apical H(2)O ligands, and close-lying F atoms in the sixth coordination sites. The major difference between this structure and the two other polymorphs previously reported is the nature and direction of hydrogen bonds. The yellow-green solid formed from Cu(hfac)(2) with excess H(2)O is identified as the trihydrate. In crystalline form it is the previously unreported [trans-Cu(hfac)(2)(H(2)O)(2)].H(2)O (3: P1; at 150 K, a = 8.3899(3), b = 9.6011(3), c = 11.4852(4) A; alpha = 72.397(2), beta = 79.161(2), gamma = 87.843(2) degrees; Z = 2). There is no conclusive evidence in favor of any solid with the composition Cu(hfac)(2).2H(2)O.  相似文献   

5.
The reaction of M(ox) x 2H(2)O (M = Co(II), Ni(II)) or K(2)(Cu(ox)(2)) x 2H(2)O (ox = oxalate dianion) with n-ampy (n = 2, 3, 4; n-ampy = n-aminopyridine) and potassium oxalate monohydrate yields one-dimensional oxalato-bridged metal(II) complexes which have been characterized by FT-IR spectroscopy, variable-temperature magnetic measurements, and X-ray diffraction methods. The complexes M(mu-ox)(2-ampy)(2) (M = Co (1), Ni (2), Cu (3)) are isomorphous and crystallize in the monoclinic space group C2/c (No. 15), Z = 4, with unit cell parameters for 1 of a = 13.885(2) A, b = 11.010(2) A, c = 8.755(1) A, and beta = 94.21(2) degrees. The compounds M(mu-ox)(3-ampy)(2).1.5H(2)O (M = Co (4), Ni (5), Cu (6)) are also isomorphous and crystallize in the orthorhombic space group Pcnn (No. 52), Z = 8, with unit cell parameters for 6 of a = 12.387(1), b = 12.935(3), and c = 18.632(2) A. Compound Co(mu-ox)(4-ampy)(2) (7) crystallizes in the space group C2/c (No. 15), Z = 4, with unit cell parameters of a = 16.478(3) A, b = 5.484(1) A, c = 16.592(2) A, and beta = 117.76(1) degrees. Complexes M(mu-ox)(4-ampy)(2) (M = Ni (8), Cu (9)) crystallize in the orthorhombic space group Fddd (No. 70), Z = 8, with unit cell parameters for 8 of a = 5.342(1), b = 17.078(3), and c = 29.469(4) A. All compounds are comprised of one-dimensional chains in which M(n-ampy)(2)(2+) units are sequentially bridged by bis-bidentate oxalato ligands with M.M intrachain distances in the range of 5.34-5.66 A. In all cases, the metal atoms are six-coordinated to four oxygen atoms, belonging to two bridging oxalato ligands, and the endo-cyclic nitrogen atoms, from two n-ampy ligands, building distorted octahedral surroundings. The aromatic bases are bound to the metal atom in cis (1-6) or trans (7-9) positions. Magnetic susceptibility measurements in the temperature range of 2-300 K show the occurrence of antiferromagnetic intrachain interactions except for the compound 3 in which a weak ferromagnetic coupling is observed. Compound 7 shows spontaneous magnetization below 8 K, which corresponds to the presence of spin canted antiferromagnetism.  相似文献   

6.
X-Ray diffraction studies of three aliphatic copper(I) carboxylates revealed a tetranuclear core structure for [Cu(4)(O(2)CCH(2)CH(3))(4)] (1), [Cu(4)(O(2)CCF(3))(O(2)CCH(2)CH(3))(3)] (2), and [Cu(4)(O(2)CCF(2)CF(3))(4)] (3). The effect of a stepwise increase in electrophilicity on solid-state interactions of copper(I) tetramers as well as the implications of structural variations on photoluminescent properties of the above copper(I) propionates have been discussed.  相似文献   

7.
The windmill-shaped hexanuclear copper(II) cluster {(H(2)O)(2)Cu(2)(mu(3)-(Ade)(4)[Cu(oda)(H(2)O)](4)}.6H(2)O (1-o) has been synthesized in aqueous medium by in situ core-controlled expansion of the neutral building block Cu(2)(mu(2)-N3,N9-Ade)(4)(H(2)O)(2) (2) with Cu(oda)(H(2)O) (3-o) (Ade = adeninato(1-) and oda = oxydiacetato(2-) ligands). Crystal data for 2-b (2.5H(2)O): triclinic, space group P(-)1; a = 9.374(1), b = 9.440(1), c = 10.326(1) A; alpha = 78.72(1), beta = 76.77(1), gamma = 63.51(1) degrees ; final R(1) = 0.059; T = 100(2) K. Crystal data for 1-o: monoclinic, space group P2(1)/n; a = 15.203(2), b = 10.245(1), c = 19.094(2) A; beta = 101.61(1) degrees ; final R(1) = 0.049; T = 293(2) K. The X-shaped hexanuclear molecule consists of a central core (2) and four terminal arms (3-o) linked together by bridging mu(3)-N3,N7,N9-Ade ligands. There are three crystallographic independent metal atoms (two terminals, one central). All Cu(II) atoms exhibit a 4 + 1 coordination, of which one is an aqua apical ligand. The basal coordination sets complete the CuN(4) + O or CuO(3)N + O chromophores for the central or terminal metal atoms, respectively. Thermal stability and spectral and magnetic properties were also studied. Analogous compounds to 1-o with tridentate or tripodal tetradentate ligands L(2-), instead of oda, have also been synthesized.  相似文献   

8.
Copper(I) and copper(II) complexes possessing a series of related ligands with pyridyl-containing donors have been investigated. The ligands are tris(2-pyridylmethyl)amine (tmpa), bis[(2-pyridyl)methyl]-2-(2-pyridyl)ethylamine (pmea), bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine (pmap), and tris[2-(2-pyridyl)ethyl]amine (tepa). The crystal structures of the protonated ligand H(tepa)ClO(4), the copper(I) complexes [Cu(pmea)]PF(6) (1b-PF(6)), [Cu(pmap)]PF(6) (1c-PF(6)), and copper(II) complexes [Cu(pmea)Cl]ClO(4).H(2)O (2b-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4).H(2)O (2c-ClO(4).H(2)O), [Cu(pmap)Cl]ClO(4) (2c-ClO(4)), and [Cu(pmea)F](2)(PF(6))(2) (3b-PF(6)) were determined. Crystal data: H(tepa)ClO(4), formula C(21)H(25)ClN(4)O(4), triclinic space group P1, Z = 2, a = 10.386(2) A, b = 10.723(2) A, c = 11.663(2) A, alpha = 108.77(3) degrees, beta = 113.81(3) degrees, gamma = 90.39(3) degrees; 1b-PF(6), formula C(19)H(20)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 14.413(3) A, b = 16.043(3) A, c = 18.288(4) A, alpha = beta = gamma = 90 degrees; (1c-PF(6)), formula C(20)H(22)CuF(6)N(4)P, orthorhombic space group Pbca, Z = 8, a = 13.306(3) A, b = 16.936(3) A, c = 19.163(4) A, alpha = beta = gamma = 90 degrees; 2b-ClO(4).H(2)O, formula C(19)H(22)Cl(2)CuN(4)O(5), triclinic space group P1, Z = 4, a = 11.967(2) A, b = 12.445(3) A, c = 15.668(3) A, alpha = 84.65(3) degrees, beta = 68.57(3) degrees, gamma = 87.33(3) degrees; 2c-ClO(4).H(2)O, formula C(20)H(24)Cl(2)CuN(4)O(5), monoclinic space group P2(1)/c, Z = 4, a = 11.2927(5) A, b = 13.2389(4) A, c = 15.0939(8) A, alpha = gamma = 90 degrees, beta = 97.397(2) degrees; 2c-ClO(4), formula C(20)H(22)Cl(2)CuN(4)O(4), monoclinic space group P2(1)/c, Z = 4, a = 8.7682(4) A, b = 18.4968(10) A, c = 13.2575(8) A, alpha = gamma = 90 degrees, beta = 94.219(4) degrees; 3b-PF(6), formula [C(19)H(20)CuF(7)N(4)P](2), monoclinic space group P2(1)/n, Z = 2, a = 11.620(5) A, b = 12.752(5) A, c = 15.424(6) A, alpha = gamma = 90 degrees, beta = 109.56(3) degrees. The oxidation of the copper(I) complexes with dioxygen was studied. [Cu(tmpa)(CH(3)CN)](+) (1a) reacts with dioxygen to form a dinuclear peroxo complex that is stable at low temperatures. In contrast, only a very labile peroxo complex was observed spectroscopically when 1b was reacted with dioxygen at low temperatures using stopped-flow kinetic techniques. No dioxygen adduct was detected spectroscopically during the oxidation of 1c, and 1d was found to be unreactive toward dioxygen. Reaction of dioxygen with 1a-PF(6), 1b-PF(6), and 1c-PF(6) at ambient temperatures leads to fluoride-bridged dinuclear copper(II) complexes as products. All copper(II) complexes were characterized by UV-vis, EPR, and electrochemical measurements. The results manifest the dramatic effects of ligand variations and particularly chelate ring size on structure and reactivity.  相似文献   

9.
Three malonato-bridged copper(II) complexes of the formulas [[Cu(H2O)3][Cu(C3H2O4)2(H2O)]]n (1), [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]] [Cu(C3H2O4)2(H2O)2][[Cu(H2O)4][Cu(C3H2O4)2(H2O)2]] (2), and [Cu(H2O)4][Cu(C3H2O4)2(H2O)2] (3) (C3H2O4 = malonate dianion) have been prepared, and the structures of the two former have been solved by X-ray diffraction methods. The structure of compound 3 was already known. Complex 1 crystallizes in the orthorhombic space group Pcab, Z = 8, with unit cell parameters of a = 10.339(1) A, b = 13.222(2) A, and c = 17.394(4) A. Complex 2 crystallizes in the monoclinic space group P2/c, Z = 4, with unit cell parameters of a = 21.100(4) A, b = 21.088(4) A, c = 14.007(2) A, and beta = 115.93(2) degrees. Complex 1 is a chain compound with a regular alternation of aquabis(malonato)copper(II) and triaquacopper(II) units developing along the z axis. The aquabis(malonato)copper(II) unit acts as a bridging ligand through two slightly different trans-carboxylato groups exhibiting an anti-syn coordination mode. The four carboxylate oxygens, in the basal plane, and the one water molecule, in the apical position, describe a distorted square pyramid around Cu1, whereas the same metal surroundings are observed around Cu2 but with three water molecules and one carboxylate oxygen building the equatorial plane and a carboxylate oxygen from another malonato filling the apical site. Complex 2 is made up of discrete mono-, di-, and trinuclear copper(II) complexes of the formulas [Cu(C3H2O4)2(H2O)2]2-, [[Cu(H2O)4] [Cu(C3H2O4)2(H2O)2]], and [[Cu(H2O)4]2[Cu(C3H2O4)2(H2O)]]2+, respectively, which coexist in a single crystal. The copper environment in the mononuclear unit is that of an elongated octahedron with four carboxylate oxygens building the equatorial plane and two water molecules assuming the axial positions. The neutral dinuclear unit contains two types of copper atoms, one that is six-coordinated, as in the mononuclear entity, and another that is distorted square pyramidal with four water molecules building the basal plane and a carboxylate oxygen in the apical position. The overall structure of this dinuclear entity is nearly identical to that of compound 3. Finally, the cationic trimer consists of an aquabis(malonato)copper(II) complex that acts as a bismonodentate ligand through two cis-carboxylato groups (anti-syn coordination mode) toward two tetraaqua-copper(II) terminal units. The environment of the copper atoms is distorted square pyramidal with four carboxylate oxygens (four water molecules) building the basal plane of the central (terminal) copper atom and a water molecule (a carboxylate oxygen) filling the axial position. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-290 K. Overall, ferromagnetic behavior is observed in the three cases: two weak, alternating intrachain ferromagnetic interactions (J = 3.0 cm-1 and alpha J = 1.9 cm-1 with H = -J sigma i[S2i.S2i-1 + alpha S2i.S2i+1]) occur in 1, whereas the magnetic behavior of 2 is the sum of a magnetically isolated spin doublet and ferromagnetically coupled di- (J3 = 1.8 cm-1 from the magnetic study of the model complex 3) and trinuclear (J = 1.2 cm-1 with H = -J (S1.S2 + S1.S3) copper(II) units. The exchange pathway that accounts for the ferromagnetic coupling, through an anti-syn carboxylato bridge, is discussed in the light of the available magneto-structural data.  相似文献   

10.
From the reaction between a dinuclear paddle-wheel carboxylate, namely [Cu2mu-(O2CCH2C4H3S)4] (1), and the flexible ligand 1,3-bis(4-pyridyl)propane (BPP) a neutral 2-D coordination polymer [[Cu2(O2CCH2C4H3S)4mu-(BPP)2]]n (2) was obtained. Compounds 1 and 2 were characterized by means of elemental analysis, thermal analysis (TG/DSC), vibrational spectroscopy, and electron paramagnetic resonance (EPR). The crystal structure of 2 reveals that each Cu(II) is coordinated by two nitrogen atoms from different BPP ligands and two 3-thiopheneacetate groups within a distorted square planar geometry in a trans-[N, N, O, O] arrangement. The BPP ligand adopts a TG conformation bridging two copper centers giving rise to a 1-D sinusoidal polymeric chain along the crystallographic c axis. Adjacent 1-D chains are extended into a 2-D coordination network through pairs of monatomic carboxylate bridges in direction of the b axis. This bridging mode affords centrosymmetric dimeric units Cu2O2, and therefore, the copper ions are involved in a CuN2O2O' chromophore displaying a (4 + 1) square pyramidal coordination in the resultant 2-D polymeric network. The polycrystalline X-band EPR spectrum of 2 at room temperature is characteristic of a triplet state with nonnegligible zero-field splitting in agreement with the crystal structure. Crystal data for 2: monoclinic, space group P2(1)/c, a = 9.4253(10) A, b = 10.9373(10) A, c = 23.6378(10) A, beta = 98.733(4) degrees, Z = 2.  相似文献   

11.
The reactions of Na+ R[O]CS- (R = Me, Ph) with mixtures of CuCl and PPh3 in stoichiometric ratios yielded the compounds [Cu4(SC[O]Me)4(PPh3)4] (1), [Cu4(SC[O]Ph)4(PPh3)3] (2), [Cu2(SC[O]Me)2(PPh3)4] (3), [Cu(SC[O]Ph)(PPh3)2] (4), and [Cu2(SC[O]Ph)2(PPh3)3] (5) quantitatively. Compound 2 was also obtained from mixtures of CuCl, PPh3, and NaSC[O]Ph in the ratio 1:1:1. The analogous thioacetate compound similar to 2 and the thiobenzoate analogue of 1 could not be obtained. Attempts to prepare the unsymmetrical dimer of a thioacetate compound similar to 5 gave a mixture of 1 and 3. The structures of 1-4 have been determined by single-crystal X-ray diffraction methods. Crystal data for 1: triclinic space group Pl, a = 11.5844(3) A, b = 13.2459(3) A, c = 14.3433(3) A, alpha = 64.019(1) degrees, beta = 79.297(1) degrees, gamma = 69.426(1) degrees, V = 1850.98(7) A3, Z = 1, Dcalcd = 1.439 g.cm-3. Crystal data for 2.0.5CH2Cl2.H2O: triclinic space group P1, a = 12.4413(1) A, b = 15.5443(1) A, c = 20.4637(3) A, alpha = 94.974(1) degrees, beta = 95.976(1) degrees, gamma = 100.450(1) degrees, V = 3848.09(7) A3, Z = 2, Dcalcd = 1.416 g.cm-3. Single-crystal data for 3: monoclinic space group P2(1)/n, a = 15.2746(2) A, b = 23.2947(2) A, c = 19.0518(3) A, beta = 96.713(1) degrees, V = 6732.5(2) A3, Z = 4, Dcalcd = 1.309 g.cm-3. Crystal data for 4: triclinic space group P1, a = 10.2524(3) A, b = 12.9826(4) A, c = 14.5340(4) A, alpha = 87.723(1) degrees, beta = 75.322(1) degrees, gamma = 75.978(1) degrees, V = 1815.14(9) A3, Z = 2, Dcalcd = 1.327 g.cm-3. Compound 1, [mu 3-SC[O]Me-S)2(mu-SC[O]Me-S)2(CuPPh3)4], is a tetramer with a distorted stepladder structure in which two copper atoms are trigonally coordinated and the other two are tetrahedrally coordinated. Two bonding modes, namely, mu 3-S and mu 2-S, were observed for the Me[O]CS- anion. The structure of 2 may be described as a highly distorted cubanoid structure and formulated as [(mu 3-SC[O]Ph-S3)(mu 3-SC[O]Ph-S2,O)3(Cu)(CuPPh3)3]. In 2, three copper atoms have tetrahedral coordination geometry and one copper atom is trigonally coordinated. Unprecedented bonding modes, namely, mu 3-S, have been observed for the R[O]CS- anions, in 1 and 2 and mu 3-S2,O in 2. Compound 3, [(mu-SC[O]MeS)(mu-SC[O]Me-S,O)[Cu(PPh3)2]2] is a dimer with mu 2-S and mu 2-S,O bonding modes of Me[O]CS- ligands. Monomeric structure was found in 4 in which the copper atom has trigonal planar geometry with a very weak intramolecular interaction with O. Variable temperature 31P NMR studies in solution show the presence of various species in equilibria.  相似文献   

12.
Reactions of two new tripodal ligands 1,3,5-tris(1-imidazolyl)benzene (4) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (5) with metal [Ag(I), Cu(II), Zn(II), Ni(II)] salts lead to the formation of novel two-dimensional (2D) metal-organic frameworks [Ag(2)(4)(2)][p-C(6)H(4)(COO)(2)].H(2)O (6), [Ag(4)]ClO(4) (7), [Cu(4)(2)(H(2)O)(2)](CH(3)COO)(2).2H(2)O (8), [Zn(4)(2)(H(2)O)(2)](NO(3))(2) (9), [Ni(4)(2)(N(3))(2)].2H(2)O (10), and [Ag(5)]ClO(4) (11). All the structures were established by single-crystal X-ray diffraction analysis. Crystal data for 6: monoclinic, C2/c, a = 23.766(3) A, b = 12.0475(10) A, c = 13.5160(13) A, beta = 117.827(3) degrees, Z = 4. For compound 7: orthorhombic, P2(1)2(1)2(1), a = 7.2495(4) A, b = 12.0763(7) A, c = 19.2196(13) A, Z = 4. For compound 8: monoclinic, P2(1)/n, a = 8.2969(5) A, b = 12.2834(5) A, c = 17.4667(12) A, beta = 96.5740(10) degrees, Z = 2. For compound 9: monoclinic, P2(1)/n, a =10.5699(3) A, b = 11.5037(3) A, c = 13.5194(4) A, beta = 110.2779(10) degrees, Z = 2. For compound 10: monoclinic, P2(1)/n, a = 9.8033(3) A, b = 12.1369(5) A, c = 13.5215(5) A, beta = 107.3280(10) degrees, Z = 2. For compound 11: monoclinic C2/c, a = 18.947(2) A, b = 9.7593(10) A, c = 19.761(2) A, beta = 97.967(2) degrees, Z = 8. Both complexes 6 and 7 are noninterpenetrating frameworks based on the (6, 3) nets, and 8, 9 and 10 are based on the (4, 4) nets while complex 11 has a twofold parallel interpenetrated network with 4.8(2) topology. It is interesting that, in complexes 6,7, and 11 with three-coordinated planar silver(I) atoms, each ligand 4 or 5 connects three metal atoms, while in the case of complexes 8, 9, and 10 with six-coordinated octahedral metal atoms, each ligand 4 only links two metal atoms, and another imidazole nitrogen atom of 4 did not participate in the coordination with the metal atoms in these complexes. The results show that the nature of organic ligand and geometric needs of metal atoms have great influence on the structure of metal-organic frameworks.  相似文献   

13.
A novel end-to-end azido-bridged polynuclear Schiff-base copper(H) complex,[Cu(C12H15Br2N2O)(N3)]n, was prepared and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction.The crystal belongs to the orthorhombic system, space group Pbcn with a = 24.588(5), b = 10.377(2), c = 13.022(3)(A),V= 3322.6(12)(A)3, Z = 8, Dc = 1.874 g/cm3, Mr= 468.65, λ(MoKα) = 0.71073 (A),μ= 6.130 mm-1, F(000) = 1832, R = 0.0637 and wR = 0.1176.The Cu atom in the complex is five-coordinated in a square pyramidal geometry by three donoratoms of the Schiff-base ligand, and two N atoms from two bridging azide ligands.The [2,4-dibromo-6-[(3-dimethylaminopropylimino)methyl]phenolato]copper(Ⅱ) units are linked by the bridging azide ligands, giving zigzag polymeric chains with backbones of the [-Cu-N-N-N-Cu]n type running along the b axis.  相似文献   

14.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

15.
INTRODUCTIONThesynthesisofpolynuclearcopper lanthanoidcomplexesisofspecialinterestforsev eralreasons〔1-4〕.Thesecomplexesareim...  相似文献   

16.
Reaction of N,N'-bis(phosphonomethyl)-1,10-diaza-18-crown-6 (H(4)L) with copper(II) acetate in 1:1 ethanol/water mixed solvents afforded a new crystal-engineered supramolecular metal phosphonate, Cu(H(2)L) (complex 1). By reaction of the same ligand with cadmium(II) nitrate in a 2:1 (M/L) ratio in methanol, a cadmium(II) complex with a 3D network structure was isolated, Cd(2.75)(L)(H(2)O)(7) x 1.5NO(3) x 7H(2)O x MeOH (complex 2). The copper(II) complex crystallized in the monoclinic space group P2(1)/c, with a =10.125(4), b = 14.103(6), and c = 14.537(6) A, beta = 91.049(8) degrees, V = 2075.4(16) A(3), and Z = 2. The Cu(II) ions in complex 1 are 6-coordinated by two phosphonate oxygen atoms, two nitrogen, and two oxygen atoms from the crown ether ring. Their coordination geometry can be described as Jahn-Teller-distorted octahedral, with elongated Cu-O(crown) distances (2.634(4) and 2.671(4) A for Cu(1) and Cu(2), respectively). The other two crown oxygen atoms remain uncoordinated. Neighboring two Cu(H(2)L) units are further interlinked via a pair of strong hydrogen bonds between uncoordinated phosphonate oxygen atoms, resulting in a one-dimensional supramolecular array along the a axis. The cadmium(II) complex is tetragonal, P4(2)/n (No. 86) with a = 20.8150(9) and c = 18.5846(12) A, V = 8052.0(7) A(3), and Z = 8. Among four cadmium(II) atoms in an asymmetric unit, one is 8-coordinated by four chelating phosphonate groups, the second one is 8-coordinated by 6 coordination atoms from a crown ring and two oxygen atoms from two phosphonate groups, the third Cd(II) atom is octahedrally coordinated by three aqua ligands and three phosphonate oxygen atoms from three phosphonate groups, and the fourth one is 6-coordinated by four aqua ligands and two oxygen atoms from two phosphonate groups in a distorted octahedral geometry. These cadmium atoms are interconnected by bridging phosphonate tetrahedra in such a way as to form large channels along the c direction, in which the lattice water molecules, methanol solvent, and nitrate anions reside. The effect of extent of deprotonation of phosphonic acids on the type of complex formed is also discussed.  相似文献   

17.
1INTRODUCTIONThesynthesisofpolynuc1earmixedcopper-lanthanoidcomplexesisofinterestforseveralreasons[l-4i.Thesecomplexesareimportanttotheunderstandingofthenature0fthemagneticexchangeinteractionsbetweenrareearthandtransiti0n-metalions,andtheycanpossib1ybeusedasmagneticmaterialst2'33andhightemperaturesuperconductors"'.Itwasbelievedthatthemultidentatepoly-carboxylateacidsisgoodligandsforthepreparationoftheLn-Cumixedmetalcomplexesasthemetalionscanbebridgedbythebidentatecarboxylategroups.Thedig…  相似文献   

18.
Metal-organics [((RO)(3)P)(m)CuO(2)CCF(3)] (R = CH(3): 11a, m = 1; 11b, m = 2; 11c, m = 3. R = CH(2)CH(3): 12a, m = 1; 12b, m = 2; 12c, m = 3. R = CH(2)CF(3): 13a, m = 1; 13b, m = 2; 13c, m = 3) are either accessible by the reaction of [((RO)(3)P)(m)CuCl] (R = CH(3): 5a, m = 1; 5b, m = 2; 5c, m = 3. R = CH(2)CH(3): 6a, m = 1; 6b, m = 2; 6c, m = 3) with [KO(2)CCF(3)] (7), or treatment of [Cu(2)O] (8) with HO(2)CCF(3) (9) and P(OR)(3) (2, R = CH(3); 3, R = CH(2)CH(3); 4, R = CH(2)CF(3)). (31)P{(1)H} NMR spectra [((CH(3)O)(3)P)(m)CuO(2)CCF(3)] (m = 1, 1.5, 2, 2.5, 3, 3.5, and 4) have been studied at 25 and -80 °C showing phosphite ligand exchange in solution. The molecular structures of 11a and 13a-13c in the solid state are reported. Complexes 11a and 13a are tetramers featuring μ-η(2)(1κO:2κO')- and μ(3)-η(2)(1κO:2κO':3κO')-(11a) or μ(3)-η(2)(1κO:2κO':3κO')-bonded O(2)CCF(3) ligands (13a) with the Cu(I) ions being part of CuPO(2) and CuPO(3) units (11a), while in 13a solely a CuPO(3) moiety is present. Skeletal isomerism of 11a vs. 13a is discussed. Compound 13b is dimeric ({CuP(2)O(2)}(2)) with pseudo-tetrahedral Cu environments and μ-η(2)(1κO:2κO')O(2)CCF(3) functionalities. In monomeric 13c the O(2)CCF(3) ligand is η(1)(κO)-bonded to a tetra-coordinated Cu(i) ion. The thermal solid state properties of 11, 12 and 13 were studied by Thermo Gravimetry (TG). These complexes decompose by phosphite elimination, decarboxylation and dealkylation. Hot-wall Chemical Vapour Deposition (CVD) experiments were carried out at 380 °C using 11c as precursor for the deposition of copper onto pieces of TiN-coated oxidized silicon substrates. Copper layers of high purity were obtained with grain sizes between 200-1200 nm.  相似文献   

19.
Chen XF  Cheng P  Liu X  Zhao B  Liao DZ  Yan SP  Jiang ZH 《Inorganic chemistry》2001,40(12):2652-2659
Three oxalate copper(II) complexes, [Cu(bipy)(C(2)O(4))(H(2)O)].2H(2)O (1), [Cu(nphen)(C(2)O(4))(H(2)O)].2H(2)O (2), and [Cu(phen)(C(2)O(4))(H(2)O)].H(2)O (3) (bipy = 2,2'-bipyridine, nphen = 5-nitro-1,10-phenanthroline and phen = 1,10-phenanthroline), have been synthesized and their crystal structures have been determined. Compound 1 crystallizes in the triclinic space group P1 with a = 7.2554(10) A, b = 10.5712(14) A, c = 10.8178(15) A, alpha = 62.086(2) degrees, beta = 77.478(3) degrees, gamma = 81.773(3) degrees, and Z = 2. Compound 2 crystallizes in the triclinic space group P1 with a = 9.582(2) A, b = 10.086(2) A, c = 10.592(2) A, alpha = 64.18(3) degrees, beta = 79.47(3) degrees, gamma = 60.06(3) degrees, and Z = 2. Compound 3 crystallizes in the monoclinic space group P2(1)/n with a = 8.4655(7) A, b = 9.7057(8) A, c = 17.4572(14) A; beta = 103.865(2) degrees, and Z = 4. The crystal structures of all complexes consist of neutral [Cu(L)(C(2)O(4))(H(2)O)] (L = bipy, nphen, and phen) units and one or two lattice water molecules in the unit cell. Each copper atom in 1, 2, and 3 involves a five-coordinate CuN(2)O(2)O' environment, with a distorted square-pyramidal structure. In 1 and 2, two lattice water molecules are around each unit of [CuL(C(2)O(4))(H(2)O)] (L = bipy and nphen) and form two-dimensional networks. Only one lattice water molecule is found in the unit cell of 3 and the two-dimensional structure is different from 1 and 2. The extended three-dimensional structure is formed through pi-pi interactions between layers. The influences of hydrogen bonds and the sizes and Lewis basicity of ligands to the structures were discussed.  相似文献   

20.
Wang FQ  Mu WH  Zheng XJ  Li LC  Fang DC  Jin LP 《Inorganic chemistry》2008,47(12):5225-5233
Four copper(II) complexes [Cu3(PZHD)2(2,2'-bpy)2(H2O)2].3H2O (1), [Cu3(DHPZA)2(2,2'-bpy)2] (2), [Cu(C2O4)phen(H2O)].H2O (3), and [Cu3(PZTC)2(2,2'-bpy)2].2H2O (4) were synthesized by hydrothermal reactions, in which the complexes 1-3 were obtained by the in situ Cu(II)/H3PZTC reactions (PZHD3- = 2-hydroxypyrazine-3,5-dicarboxylate, 2,2'-bpy = 2,2'-bipyridine, DHPZA3- = 2,3-dihydroxypyrazine-5-carboxylate, C2O42- = oxalate, phen = 1,10-phenanthroline, and H3PZTC = pyrazine-2,3,5-tricarboxylic acid). The Cu(II)/H3PZTC hydrothermal reaction with 2,2'-bpy, without addition of NaOH, results in the formation of complex 4. The complexes 1-4 and transformations from H3PZTC to PZHD3-, DHPZA3-, and C2O4(2-) were characterized by single-crystal X-ray diffraction and theoretical calculations. In the complexes 1, 2, and 4, the ligands PZHD3-, DPHZA3-, and PZTC3- all show pentadentate coordination to Cu(II) ion forming three different trinuclear units. The trinuclear units in 1 are assembled by hydrogen-bonding and pi-pi stacking to form a 3D supramolecular network. The trinuclear units in 2 acting as building blocks are connected by the carboxylate oxygen atoms forming a 2D metal-organic framework (MOF) with (4,4) topology. While the trinuclear units in 4 are linked together by the carboxylate oxygen atoms to form a novel 2D MOF containing right- and left-handed helical chains. The theoretical characterization testifies that electron transfer between OH- and Cu2+ and redox of Cu 2+ and Cu+ are the most important processes involved in the in situ copper Cu(II)/H3PZTC reactions, forming complexes of 1-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号