首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecularly imprinted polymer (MIP) microspheres were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid (MAA) as monomer, and trimethylolpropane trimethacrylate (TRIM) as cross-linker. The microsphere structure of MIP was characterized by IR spectroscopy and SEM. The influence of preparation conditions such as monomer and cross-linker dosages on the polymer absorption of MG in acetonitrile solution was also explored. Under the optimum synthesis conditions (0.25 mmol MG, 1.5 mmol MAA, 2.5 mmol TRIM, 40 mL acetonitrile), the prepared MIP microspheres have a binding capacity as high as 2000 µg g?1 of MG with an imprinting factor of above 4.0. The result suggests that the prepared MIP microspheres are promising material for the selective extraction of MG in complicated matrix solutions.  相似文献   

2.
In this paper, a new approach to prepare monolithic molecularly imprinted polymer (MIP) fibers for solid‐phase microextraction is proposed with the help of microwave irradiation. Imprinting polymerization was carried out within silica capillaries in 4.5 min, using dimethyl phthalate (DMP) as a template molecular, α‐methacrylic acid as a functional monomer and ethylene dimethacrylate as a crosslinker, acetonitrile as the porogenic solvent. The synthesis was optimized by varying the ratio of template/monomer and different volume of porogen. The resulted MIP fibers were obtained after silica being etched away with a controlled length of 1 cm, and subsequently characterized by SEM. In order to increase the selective extraction of DMP, factors affecting the extraction including extraction time, salt concentration, desorption time, and desorption solvents were investigated for solid‐phase microextraction procedures in detail. The selectivity coefficients, defined as the extraction amount ratio of MIP to its nonimprinting fiber, were 5.6, 2.6, and 1.4 for DMP and its counterpart including dibutyl phthalate and di‐n‐octylo‐phthalate, respectively. The resulted fibers were also applied to detect DMP, dibutyl phthalate, and di‐n‐octylo‐phthalate in bottled beverage samples coupled to HPLC and resulted in relative recoveries of up to 73.8–98.5%, respectively.  相似文献   

3.
Zhou J  Ma C  Zhou S  Ma P  Chen F  Qi Y  Chen H 《Journal of chromatography. A》2010,1217(48):7478-7483
A simple, rapid and sensitive method for the determination of pirimicarb in tomato and pear using polymer monolith microextraction (PMME) based on the molecularly imprinted polymer (MIP) monolith combined with high-performance liquid chromatography-photodiodes array detector (HPLC-PAD) was developed. By optimizing the polymerization conditions, such as the nature of porogenic solvent and functional monomer, the molar ratio of the monomer and cross-linker, an pirimicarb MIP monolith was synthesized in a micropipette tip using methacrylic acid (MAA) as the functional monomer, ethylene dimethacrylate (EGDMA) as the cross-linker and the mixture of toluene-dodecanol as the porogenic solvent. The MIP monolith showed highly specific recognition for the template pirimicarb. The monolith was applied for the selective extraction of pirimicarb in tomato and pear. Several parameters affecting MIP-PMME were investigated, including the nature and volume of extraction solvent, sample volume, flow rate and sample pH. Under the optimum PMME and HPLC conditions, the linear ranges were 2.0-1400 μg/kg for pirimicarb in tomato and pear with the correlation coefficient of above 0.999. The detection limits (s/n=3) were both 0.6 μg/kg. The proposed method was successfully applied for the selective extraction and determination of pirimicarb in tomato and pear.  相似文献   

4.
In this paper, a simple, fast and in situ polymerization strategy to prepare monolithic molecularly imprinted polymer (MIP) fibers for solid phase microextraction (SPME) is developed using silica capillaries as molds. With the help of microwave irradiation, polymerization was carried out in 5.5 min using olivetol as a template molecular, α‐methacrylic acid (MAA) as a functional monomer and ethylene dimethacrylate (EDMA) as a crosslinker, toluene and dodecanol as the binary porgens. The resulted MIP fibers were finally obtained after silica being etched away with a controlled length, and subsequently characterized by scanning electron microscope (SEM) and Fourier transform infrared absorption spectroscopy (FT‐IR). Under the optimal extraction conditions, a simple method based on the coupling of MIP SPME with high performance liquid chromatography (HPLC) was used for the selective determination of the model mixtures of olivetol, phenol and m‐toluidine in lake water and wheat bran samples. The recoveries of olivetol, phenol and m‐toluidine for both samples were in the range of 87.3‐93.6%, 21.4‐27.2%, 18.9‐24.8% at three spiked levels, respectively, demonstrating that higher extraction and the specific absorption occurred between the template molecule and the prepared MIP fiber.  相似文献   

5.
采用本体聚合法制备了孔雀石绿分子印迹聚合物,对功能单体的种类及用量、交联剂用量、模板浓度和聚合时间等参数进行了优化,并通过等温吸附实验,考察聚合物的吸附性能。 结果表明,以α-甲基丙烯酸为功能单体,当孔雀石绿、α-甲基丙烯酸和乙二醇二甲基丙烯酸酯的摩尔比为1∶4∶20时,所合成的聚合物具有最大的吸附容量,印迹因子(α=QMIP/QNIP)可达到3.6,表明合成的印迹聚合物对孔雀石绿有良好的识别和富集能力。  相似文献   

6.
以1-氨基乙内酰脲(AHD)为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用本体聚合方法合成了分子印迹聚合物(M IP),考察了模板分子与功能单体不同比例下制备的M IP对模板分子的吸附性能。通过Scatchard分析,表明该印迹聚合物上存在一类等价的吸附位点,其结合位点的离解常数KD=4.33mmol/L。  相似文献   

7.
Solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) as sorbent has been investigated for the clean-up of the broad-spectrum bacteriostatic antibiotic chloramphenicol (CAP) in honey samples. The MIP was prepared by using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, chloroform as porogen and CAP as template molecule. The binding behaviour of the template CAP on the MIP was evaluated by high-performance liquid chromatography, and then the MIP was applied as a sorbent in SPE to selectively extract CAP from honey. It was shown that recoveries of nearly 100% of a CAP standard solution and up to 94% from spiked honey samples could be obtained after SPE.  相似文献   

8.
Molecularly imprinted polymers (MIPs) are synthetic tailor-made polymers with high selectivity towards a particular substance (template). An MIP using vinblastine (VLB) as the template molecule was synthesized and characterized. The presence of monomer-template complexes in a non-covalent way was confirmed by UV-vis spectrometry analysis. The polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linking agent, and toluene as the porogenic solvent by a thermo-polymerization method. The characterization of the obtained MIP was evaluated by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. It was observed that the morphology of the MIP was more porous and rough, and the surface area had a significant increase compared with that of the non-imprinted polymer (NIP). This MIP was used as the sorbents of solid-phase extraction (SPE) to assess the selectivity of the MIP after optimization of the SPE protocol. VLB was specifically adsorbed on the MIP cartridge, while to vincristine (VCR), the chemical analog of VLB, almost no selective binding appeared. On the basis of the results, Catharanthus roseus extract was applied to the MIP cartridge for investigating its capability to extract VLB from the plant extract, and the capacity of the MIP cartridge was also evaluated. It was shown that the MIP could effectively enrich VLB from C. roseus extract and the recovery amounted to 93.8%. The solvents dissolving the samples had significant influence on the capacity of the MIP cartridge; it was 750 μg/g in toluene, 625 μg/g in chloroform, and 250 μg/g in methanol.  相似文献   

9.
Monolithic fibers were synthesized and applied for the solid‐phase microextraction and determination of chlorophenols in environmental water samples by coupling with HPLC. The fibers were prepared by copolymerization of vinylimidazole and ethylene dimethacrylate as functional monomer and cross‐linker, respectively. The effect of the preparation conditions of monolithic fibers on the extraction efficiencies was investigated in detail. Several characteristic techniques, such as elemental analysis, infrared spectroscopy, mercury‐intrusion porosimetry, and SEM were used to characterize the monolithic material. The effect of the extraction parameters, including desorption solvent, extraction and desorption time, pH values, and ionic strength in sample matrix on the extraction performance was investigated thoroughly. Under the improved extraction conditions, the linear ranges of 2‐chlorophenol, 2,4‐dichlorophenol and pentachlorophenol were 1.0–200 μg/L and 2.0–200 μg/L for 2,4,6‐trichlorophenol. The detection limits (S/N = 3) were in the range of 0.16–0.45 μg/L, the RSDs for intraday and interday precisions were <7.0%. Finally, the proposed method was successfully used to detect different environmental water samples. The recoveries of spiked water samples were ranged from 90.0 to 115%. At the same time, satisfactory repeatability was achieved with RSDs < 9.0%.  相似文献   

10.
Qu S  Wang X  Tong C  Wu J 《Journal of chromatography. A》2010,1217(52):8205-8211
A new molecularly imprinted polymer (MIP) targeting to quinolones (Qs) and tetracyclines (TCs) was synthesized using itaconic acid (ITA) and ciprofloxacin (CIP) as a functional monomer and template molecule, respectively. Factors affecting the overall performance of MIP were investigated, and the results showed that Fe(3+) ion play a vital role in the formation of MIP with high molecular imprinting effect. Meanwhile, the chelating ability of monomer, species of template molecule, as well as the molar ratio of monomer and template also contribute to the performance of the obtained MIP. Cyclic voltammetry verified that, with the participation of Fe(3+) ions, a ternary complex of ITA-Fe(3+)-CIP could be formed before polymerization. Compared with conventional MIP prepared from commonly used monomer, methacrylic acid (MAA), the new MIP show significantly enhanced molecular imprinting effect and higher capacity for specific adsorption of target compounds as revealed by static and dynamic binding experiments. The MIP was successfully used as solid-phase extraction (SPE) adsorbent for enriching a broad spectrum of antibiotics containing beta-diketone structure from surface water sample. HPLC detection showed that high recovery rate (78.6-113.6%) was found in these spiked antibiotics, whereas recovery rate for the non structurally related drugs, epinephrine (EP) and dopamine (DOPA), was very low (4.7-7.6%) on the MIP cartridges. The results demonstrate that the MIP prepared by the strategy proposed in this work, could specifically target to a series of structurally related antibiotics containing beta-diketone structure.  相似文献   

11.
通过分子模拟研究模板分子与功能单体的相互作用,可以缩短优化时间,为选取合适的功能单体以及模板分子/功能单体比例提供依据.本研究以山奈酚为模板分子,通过分子模拟优化实验条件,确定以甲基丙烯酸(MAA)为最优的功能单体,山奈酚/MAA最佳比例为1∶4 (w/w).此外,以二苄基三硫代碳酸酯(DBTTC)为可逆加成-链断裂转移剂,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,实现了仅需优化引发剂和可逆加成-断裂链转移聚合(RAFT)试剂即可制得性能优异的山奈酚分子印迹整体柱.此整体柱对山奈酚和相似物槲皮素的分离度为1.52,相对标准偏差为1.8%.实验结果表明,分子模拟计算简化了实验步骤,以DBTTC为RAFT试剂得到了具有更好形态和结构的分子印迹整体柱.  相似文献   

12.
Hu X  Pan J  Hu Y  Huo Y  Li G 《Journal of chromatography. A》2008,1188(2):97-107
Molecularly imprinted polymer (MIP) is widely used in many fields because of its characteristics of high selectivity, chemical stability and easy preparation. To enhance the selectivity and applicability of solid-phase microextraction (SPME), a novel MIP-coated SPME fiber was firstly prepared by multiple co-polymerization method with tetracycline as template. It could be coupled directly to high-performance liquid chromatography (HPLC) and used for trace analysis of tetracyclines (TCs) in complicated samples. The characteristics and application of the fibers were investigated. The electron microscope provided a crosslinked and porous surface, and the average thickness of the MIP coating was 19.5 microm. Compared with the non-imprinted polymer (NIP) coated fibers, the special selectivity to tetracycline and structure-similar oxytetracycline, doxycycline, chlortetracycline were discovered with the MIP-coated fibers. The adsorption and desorption of TCs with the MIP-coated fiber could be achieved quickly. A method for the fluorimetric determination of four TCs by the MIP-coated SPME coupled with HPLC was developed. The optimized extraction conditions such as extraction solvent, desorption solvent, and stirring speed were studied. Linear ranges for the four TCs were 5.00-200 microg/L and detection limits were within the range of 1.0-2.3 microg/L. The method was applied to simultaneous multi-residue analysis of four TCs in the spiked chicken feed, chicken muscle, and milk samples with the satisfactory recoveries.  相似文献   

13.
苏丹红I分子印迹聚合物的制备及其性能评价   总被引:1,自引:0,他引:1  
戴晴  王妍  包学伟  荆涛  郝巧玲  周宜开  梅素容 《色谱》2009,27(6):764-768
以苏丹红I为模板分子,通过沉淀聚合法制备了一种对苏丹红I具有特异性吸附的分子印迹聚合物。通过选择性评价和前沿色谱实验,评价了致孔剂的选择和用量、功能单体和模板分子的物质的量比对分子印迹聚合物识别性能的影响。实验结果表明: 当以甲醇和乙腈的混合液(体积比为30:10)为致孔剂,甲基丙烯酸(MAA)为功能单体,且功能单体和模板分子的物质的量比为8:1时,分子印迹聚合物的印迹因子为2.32,亲和位点总数(Bt)为0.50 μmol/g;将其作为固相萃取柱填料用于辣椒粉样品中痕量苏丹红I的净化和富集,结果表明: 苏丹红I浓度在10~500 μmol/L范围内时,呈现良好的线性关系(r=0.999);检出限为3.3 μmol/L,加标回收率为95.87%~98.41%,相对标准偏差低于3.1%。该方法有望用于辣椒粉样品中苏丹红I添加剂的常规检测。  相似文献   

14.
Ibuprofen and ketoprofen are chemically similar non‐steroidal anti‐inflammatory drugs widely used in the treatment of arthritis. Using a molecular imprinting technique, a simple and rapid method was developed for the simultaneous separation and determination of ibuprofen and ketoprofen. Molecular imprinting introduces artificial binding sites into a synthetic polymer matrix, allowing it to exhibit selective rebinding of template molecules. Imprinted polymers can be regarded as an HPLC stationary phase, important for pharmaceutical analysis. Most molecularly imprinted polymers (MIPs) are synthesized by free radical polymerization of functional monomers, resulting in an excess of crosslinking monomers. In this study, MIPs have been prepared with a ibuprofen template, which can form intramolecular hydrogen bonds. Methacrylic acid (MAA) and ethyleneglycol dimethacrylate (EGDMA) were used as the functional monomer and cross‐linker, respectively. Bulk polymerization was carried out at 4 °C under UV radiation. The resulting MIP was ground into 25?44 μm particles, which were slurry‐packed into analytical columns. Template molecules were removed by methanol‐acetic acid (9:1, v/v). We evaluated the template binding performance of the MIP using HPLC, with ultraviolet (UV) detection at 234 nm. Chromatographic resolution of ibuprofen and ketoprofen on the MIPs were appraised using buffer/acetonitrile (45/55, v/v) as the mobile phase. Results show that the MIPs prepared using ibuprofen as the template had a significant molecular imprinting effect. The method was successfully applied to the separation and analysis of ibuprofen and ketoprofen in pharmaceuticals.  相似文献   

15.
In this study, a novel molecularly imprinted polymer (MIP) based on methacrylic acid (MAA) monomer was synthesized to control release of trinitroglycerin (TNG) as a vasodilator drug for adjusting the cardiac conditions. For this purpose, TNG nanospheres based on poly(methacrylic acid) (PMAA) were prepared by using the precipitation polymerization process. The synthesized TNG nanospheres‐based MIP samples were characterized by means of Fourier transform infrared spectroscopy and field‐emission scanning electron microscopy in order to investigate their provided active functional groups within the cavities as well as morphology, respectively. The results showed that the appropriate non‐covalent bindings between the TNG (template) and PMAA provided within the MIP samples with imprinting factor of 1.98 were achieved by optimizing the amounts of trimethylolpropane trimethacrylate (TRIM) as a cross‐linker and MAA as a functional monomer. On the basis of these obtained conditions, the polymeric nanospheres containing TNG were formed in shape of spherical particles with an average diameter sizing about 40 nm. These remarkable results were obtained by the use of 1:10 molar ratio of TRIM/TNG and 1:6 molar ratio of MAA/TNG. Moreover, in‐vitro release of the TNG from the MIP samples to phosphate buffer solution (pH = 7.4) indicated that the MIP samples had a moderate and gradual release compared with the non‐imprinted polymer samples. These outcomes conducted us to consider the samples as carriers for adjusting potentially cardiac conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper we describe the synthesis of a molecularly imprinted polymer (MIP) by precipitation polymerisation, with barbital as the template molecule, and the application of the barbital MIP as a molecularly selective sorbent in the solid-phase extraction (SPE) of barbiturates from human urine samples. The MIP was synthesised by precipitation polymerisation using 2,6-bis-acrylamidopyridine as the functional monomer and DVB-80 as the cross-linking agent. The spherical MIP particles produced were 4.2 ± 0.4 μm in diameter; a non-imprinted control polymer (NIP) in bead form was 4.8 ± 0.4 μm (mean±standard deviation) in diameter. The particles were packed into a solid-phase extraction cartridge and employed as a novel sorbent in a molecularly imprinted solid-phase extraction (MISPE) protocol. The MIP showed high selectivity for the template molecule, barbital, a feature which can be ascribed to the high-fidelity binding sites present in the MIP which arose from the use of 2,6-bis-acrylamidopyridine as the functional monomer. However, the MIP also displayed useful cross-selectivity for other barbiturates besides barbital. For real samples, the MIP was applied for the extraction of four barbiturates from human urine. However, due to the high urea concentration in this sample which interfere the proper interaction of barbiturates onto the MIP, a tandem system using a commercially available sorbent was developed.  相似文献   

17.
靳亚峰  陈娜  刘润强  陈军  柏连阳  张裕平 《色谱》2013,31(6):587-595
以橄榄醇为模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,甲苯和十二醇为溶剂,通过本体聚合法制备了橄榄醇分子印迹聚合物。利用平衡结合实验、扫描电镜(SEM)及红外光谱(FTIR)对分子印迹聚合物(MIP)进行了表征,并用该聚合物进行了加标麦麸中橄榄醇的固相萃取(SPE)研究。平衡结合实验表明MIP对模板分子具有更好的识别性。Scatchard分析表明对橄榄醇分子的吸附存在2类不同结合位点,其中高亲和力结合位点和低亲和力结合位点的解离常数分别为0.021和1.002 mmol/L,相应的最大表观结合量分别为18.74和135.9 μmol/g。在优化的固相萃取条件下,MIP固相萃取柱对加标麦麸中橄榄醇的回收率达到97.8%~98.8%,相对标准偏差为2.8%~4.2%(n=5),线性范围为0.1~100 mg/L,检出限(S/N=3)为0.062 mg/L。与非印迹聚合物(NIP)柱及市售聚苯乙烯/二乙烯基苯(PLS)柱相比,MIP柱的选择性更强,回收率更高,纯化效果更好。  相似文献   

18.
Recognition of five steroid compounds, beta-estradiol, ethynylestradiol, estradiolbenzoate, testosterone and methyltestosterone were studied using a synthesized molecularly imprinted polymer (MIP). When beta-estradiol was used as the template molecule, the polymer was synthesized with methacrylic acid (MAA) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross linking agent through non-covalent interactions. It is found that the kind of porogen solvent and the polymerization conditions greatly affected the binding ability of a MIP to a certain molecule. Releasing of the template was performed by continuous extraction with methanol containing 10% acetic acid in a Soxhlet extractor. Our results indicated that such carefully synthesized MIP showed specific affinity toward beta-estradiol in the adsorption process.  相似文献   

19.
韦寿莲  郭小君  严子军  刘永  汪洪武 《色谱》2014,32(5):458-463
以邻苯二甲酸二辛酯(DOP)为虚拟模板分子,α-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,采用沉淀聚合法制备了对邻苯二甲酸二(2-丙基庚)酯(DPHP)具有高选择性的分子印迹聚合物(MIP)。用紫外分光光度法探索了不同功能单体与模板分子的结合能力,与功能单体丙烯酸(AA)相比,MAA与DOP的结合能力更强,其最佳结合的物质的量比为6:1。考察MIP对DOP、DPHP、邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二丁酯(DBP)的选择吸附性能,发现该聚合物对DPHP具有更高的选择吸附性。以制备的聚合物为固相萃取填料,结合HPLC分析,考察了淋洗剂与洗脱剂的种类和用量对DPHP回收率的影响。将DPHP甲醇溶液加载至萃取柱后用1 mL甲醇-水(1:9,v/v)淋洗,5 mL甲醇-乙酸(9:1,v/v)洗脱,DPHP在分子印迹固相萃取(MISPE)柱上的回收率达到96.8%,而在非印迹固相萃取(NISPE)柱上的回收率仅为52.9%。将建立的MISPE-HPLC方法应用于测定兔口服DPHP后不同时间点兔血清中DPHP的浓度,发现其血药浓度的最大值为5.88 μg/mL,达峰值时间为4 h,DPHP加标回收率为90.0%~92.0%,相对标准偏差小于5%。  相似文献   

20.
A molecularly imprinted polymer (MIP) based capacitive sensor for antibiotic detection in drinking water and milk has been developed on a gold coated silicon electrode (Au Electrode). The electrode was fabricated by electropolymerizing monomer resorcinol (RN) on Au surface in presence of sulphanilamide (SN) as a template molecule, to get insulated RN polymer antibiotic composite. The insulation of the polymer film was improved by incubation of electrode in 1‐Dodecanethiol solution. Subsequently MIP sensor was obtained by extraction of SN in ethanol and acetic acid solution. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were performed for characterization of the developed MIP electrode at different steps of fabrication. The surface morphology of MIP electrode was characterized using atomic force microscopy (AFM), X‐ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x‐ray spectroscopy (EDS). Performance of MIP sensor was evaluated by measuring change in capacitance against varying concentration of SN using EIS. A linear response in the range 1 to 200 μg L?1 SN was recorded for MIP sensor with a detection limit of 0.1 μg L?1. The developed MIP sensor exhibited good selectivity towards SN in water and milk with recoveries in the range 92 % to 105 %. The obtained results suggest the usability of MIP based sensor for SN estimation in water and milk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号