首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Aggrecan, a large biological polyelectrolyte molecule with a bottlebrush shape, forms complexes with hyaluronic acid (HA) that provide compressive resistance in cartilage. In solutions of aggrecan alone, the concentration dependence of the osmotic pressure Pi is marked by self-assembly of the molecules into aggregates. When HA is added to the solution at low aggrecan concentration c, the osmotic pressure is reduced, but in the physiological concentration range this trend is reversed. The osmotic modulus c partial differentialPi partial differentialc, which determines load bearing resistance, is enhanced in the HA-containing solutions. Dynamic light scattering (DLS) measurements show that the aggregates behave like microgels and that they become denser as the aggrecan concentration increases. The degree of densification is greatest at large distance scales in the microgels, but decreases at short distance scales. Measurements at higher resolution, involving small angle neutron scattering and small angle x-ray scattering (SAXS), confirm that at length scales shorter than 1000 angstroms, the density is independent of the concentration and that the individual bottlebrushes in the microgels retain their identity. The absence of collective diffusion modes in the relaxation spectrum, measured by DLS and neutron spin echo, corroborates the lack of interpenetration among the aggrecan subunits in the microgel. Complexation with HA modifies the long-range spatial organization of the microgels. Comparison of the scattering pattern of the individual aggrecan molecules obtained from SAXS measurements with that of the complexes measured by DLS shows that the aggrecan-HA structure is denser and is more uniform than the random microgels. This enhanced space-filling property allows higher packing densities to be attained, thus, optimizing resistance to osmotic compression.  相似文献   

2.
Integral equation theories and Monte Carlo simulations were used to study the Donnan equilibrium, which is established by an equilibrium distribution of a simple electrolyte between an aqueous protein-electrolyte mixture and an aqueous solution of the same simple electrolyte, when these two phases are separated by a semipermeable membrane. In order to describe the unusually low osmotic pressure found in many experiments we assumed that protein molecules can form dimers. The model solution contains proteins in a monomeric form, represented as charged hard spheres, or in a dimerized form, modeled as fused charged hard spheres. The counterions and coions were also modeled as charged hard spheres but of a much smaller size. The associative mean spherical and hypernetted-chain approximations were applied to this model. In addition, Monte Carlo computer simulations were performed for the same model system mimicking a lysozyme solution in the presence of 0.1 M sodium chloride. Theory and simulations were found to be in reasonably good agreement for the thermodynamic properties such as chemical potential and osmotic pressure under these conditions. Using the theoretical approaches mentioned above, we analyzed the experimental data for the osmotic pressure of bovine serum albumin in 0.15 M sodium chloride, human serum albumin solution (HSA) in 0.1 M phosphate buffer, and lysozyme in sulphate and phosphate buffers. The theoretically determined osmotic coefficients were fitted to the existing experimental data in order to obtain the fraction of dimers in solution. Our analysis indicated that there was relatively small self-association of protein molecules for bovine serum albumin solutions at pH=5.4 and 7.3, with the fraction of dimers smaller than 10%, while at pH=4.5 the dimer fraction was equal to 50%. In the case of HSA solutions, strong negative deviations from the ideal value were found and at pH=8.0 a reasonably good agreement between the theory and experiment is obtained by assuming full dimerization. For HSA solution at pH=5.4, the best fit to the experimental results was obtained for a fraction of dimers equal to 80%.  相似文献   

3.
Particles with an internal structure have been found in dilute water solutions of a triblock copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which has short hydrophilic PEO endblocks compared to the central hydrophobic PPO block (EO5PO68EO5, L121). The properties of the block copolymer particles (i.e., their structure, size, and time stability) have been investigated using cryogenic transmission electron microscopy (cryo-TEM) in combination with dynamic light scattering (DLS) and turbidity measurements. The particles were formed in dilute solutions by quenching the temperature to temperatures where the reversed hexagonal phase is in equilibrium with a solution of unaggregated L121 copolymers (L1). From the DLS measurements, a mean hydrodynamic radius of 158 nm was extracted. The time-scan turbidity measurements were found to be unchanged for about 46 h. At higher copolymer concentrations, a reversed hexagonal phase (H2) exists in the L121/water system. SAXS was used to investigate the internal structure of the dispersed L121-based particles containing 15 wt % L121. It was found that the internal structure transforms from H2 to an inverse micellar system (L2) as the temperature increases from 37 to 70 degrees C.  相似文献   

4.
The effect of pH on the molecular shape and dispersed state of native ovalbumin molecules in 20 mM phosphate and acetic acid buffer solutions has been studied using small-angle x-ray scattering (SAXS) and a rheological method The degree of association of the OA molecule at the 0.5% colloid system increases slightly with decreasing pH, i.e., 2.10 at pH 7.0, and 2.88 at pH 4.0, and the radius of the OA molecule decreases slightly with decreasing pH, i.e., 24.5 Å at pH 7.0, and 22.0 Å at pH 4.0.The OA colloid shows apparent yield stress and rigidity which are due to a certain ordered arrangement of the molecules. The yield stress and the rigidity increase abruptly at a pH value near to an isoelectric point (ca. pH 4.4). In the dilute system this increment is attributed to the change in the ordered arrangement or in the interparticle interaction, and not to the change in the association state of the OA molecules. The values of the yield stress and the rigidity remain almost constant over a wide concentration range and this feature (an auto-controlled mechanism) is kept over a certain range of pH.  相似文献   

5.
Clear solutions for colloidal Silicalite-1 synthesis were prepared by reacting tetraethylorthosilicate in aqueous tetrapropylammonium hydroxide solution. A dilution series with water resulting in clear solutions with a TEOS ratio TPAOH ratio H2O molar ratio of 25 : 9 : 152 up to 25 : 9 : 15,000 was analysed using liquid 29Si nuclear magnetic resonance (NMR), synchrotron small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Particle sizes were derived independently from DLS and from the combination of SAXS and NMR. NMR allowed quantitative characterization of silicon distributed over nanoparticles and dissolved oligomeric silicate polyanions. In all samples studied, the majority of silicon (78-90%) was incorporated in the nanoparticle fraction. In concentrated suspensions, silicate oligomers were mostly double-ring species (D3R, D4R, D5R, D6R). Dilution with water caused their depolymerisation. Contrarily, the internal condensation and size of nanoparticles increased with increasing dilution. SAXS revealed a decrease of effective nanoparticle surface charge upon dilution, reducing the effective particle interactions. With DLS, the reduction of nanoparticle interactions could be confirmed monitoring the collective diffusion mode. The observed evolution of nanoparticle characteristics provides insight in the acceleration of the Silicalite-1 crystallization upon dilution, in view of different crystallization models proposed in the literature.  相似文献   

6.
Small-angle X-ray scattering (SAXS) together with static (SLS) and dynamic light scattering (DLS) measurements were carried out on aqueous solutions of lysozyme (LY) and of the ionic biological detergent sodium glycocholate (NaGC). Apparent diffusion coefficients (D app), excess Rayleigh ratio, and SAXS spectra were measured for 0.1 M NaGC solutions at different ionic strengths (0.05-0.30 M NaCl). The same data were collected for LY in sodium acetate buffer 50 mM without and with 92 mM NaCl as a function of protein concentration (10-80 g L(-1)). A correlated analysis of SLS data and SAXS spectra was first tested on the LY samples and then extended to the interpretation of the NaGC data to infer information on particle structure and interaction potential. A hard-core (HC) interaction shell of uniform thickness, a screened Coulomb potential of the electric double layer (EDL) or the complete DLVO potential were alternatively used to represent the long-range tail of the interaction potential. Whenever an essentially repulsive tail is expected, all the representations give reasonable results, but the data analysis does not allow the discrimination between the oblate and the prolate symmetries of the NaGC aggregates. The DLVO model allows the interpretation of the data even when the attractive component determines the tail character. With this model an overall fit of the micelle data at all the NaCl concentrations was successfully performed by assuming a simple spherical symmetry of the micelles and invariant values of their ionization degree and Hamaker constant, thus considering just the screening effect of the added electrolyte. Whatever model is used, the results point out that the aggregates are quite hydrated (26-38 water molecules per monomer) and very slightly grow by increasing the NaCl concentration. When spherical symmetry is assumed the aggregate radii for all the samples fall in the range 15-16 A. From the SAXS and SLS, best fitting geometrical parameters, and interparticle structure factor, a D app value was calculated for each sample. An excellent consistence is achieved for LY results. On the contrary, calculated D app values systematically lower than the experimental values are always obtained for the NaGC micelles. Micelle polydispersity and internal dynamics seem to be the most probable reasons of the bad agreement.  相似文献   

7.
Human serum albumin (HSA) is a very important multi-domain transporter protein in the circulatory system responsible for carriage of various kinds of ligands within the physiological system. HSA is also known to undergo conformational transformation at different pH(s) and temperatures. In this report we have studied the binding interactions of a photosensitizing drug, protoporphyrin IX (PPIX) with various conformers of HSA at different temperatures using picosecond time-resolved fluorescence spectroscopy. Also, using dynamic light scattering (DLS) and circular dichroism (CD) spectroscopy we have followed the structural transition of various conformers of HSA at different temperatures. Ensuring the intact binding of PPIX to various conformers of HSA at different temperatures as revealed through time-resolved fluorescence anisotropy decay and significant spectral overlap of emission of Trp214 residue (donor) in domain-IIA and absorption of PPIX (acceptor) bound to domain-IB of HSA, we have applied F?rster's resonance energy transfer (FRET) technique to determine the interdomain separation under various environmental conditions. The alkali-induced conformer of HSA shows almost no change in donor-acceptor distance in contrast to the native and acid-induced conformers of HSA, which show a decrease in distance with increase in temperature. Through this study the non-covalently bound PPIX is shown to be an efficient FRET probe in reporting the different temperature-induced folded states of HSA in buffer solutions of widely differing pH values.  相似文献   

8.
In this work, fluorescence quenching technique, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique were used to gain the binding information of caffeic acid and human serum albumin (HSA) in AOT/isooctane/water microemulsions. The interaction of HSA with caffeic acid at 296, 303, and 310 K in omega(0) 20 microemulsions was characterized by one binding site with the affinity constant K at (3.23+/-0.01) x 10(4), (3.06+/-0.03) x 10(4) and (2.82+/-0.05) x 10(4)M(-1), respectively. The affinities in microemulsions are much higher than that in buffer solution. The CD spectra and FT-IR spectra with qualitative and quantitative results proved that the protein secondary structure changed in the microemulsions in the absence and presence of caffeic acid compared with the free form of HSA in buffer. The binding process was exothermic and spontaneous, as indicated by the thermodynamic analyses. These data indicated that hydrophobic interaction played a major role in the binding of caffeic acid to HSA in microemulsions and electrostatic interaction can not be excluded. The displacement experiments confirmed that caffeic acid could bind to the site I of HSA, which was in agreement with the result of the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and caffeic acid could interact with them.  相似文献   

9.
Conventional residual liquid junction potentials were measured between NBS 1:1 phosphate buffer and various dilute solutions with ionic strengths of 1-100 mmol kg?1, using 3.5 mol kg?1 potassium chloride as the bridge electrolyte. All junctions were of the free-diffusion type, formed within a 1-mm capillary. The conventional residual junction potential was indistinguishable from zero (± 0.5 mV), for dilute solutions of primary reference standards, for which calculations based on the Henderson equation predict values of 0.8–1.3 mV. Solutions of Tris-HCl (20–100 mmol kg?1) and dilute HCl (1–50 mmol kg?1) had appreciable conventional residual liquid junction potentials (1.1–3.3 mV). The experimental values for dilute HCl solutions compare favourably with those calculated with the Henderson equation. These results suggest that the pH of hard waters, measured using the NBS pH scale, will be a good approximation (within 0.01 pH) to paH, so that pH can be interpreted in terms of the activity of the hydrogen ions. Further measurements are required to ascertain whether this approximation is true for soft and acidic waters.  相似文献   

10.
This paper reports the size of reverse micelles (RMs) in AOT/octane/H(2)O and CTAB/hexanol/H(2)O microemulsions using magnetic resonance (MR) pulsed field gradient (PFG) measurements of diffusion. Diffusion data were measured using the pulsed gradient stimulated echo (PGSTE) experiment for surfactant molecules residing in the RM interface. Inverse Laplace transformation of these data generated diffusion coefficients for the RMs, which were converted into hydrodynamic radii using the Stokes-Einstein relation. This technique is complementary to those previously used to size RMs, such as dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), but also offers several advantages, which are discussed. RM sizes, determined using the PGSTE method, in the AOT (sodium bis(2-ethylhexyl) sulfosuccinate) and CTAB (cetyltrimethylammonium bromide) microemulsions were compared with previous DLS and SAXS data, showing good agreement. Methods for determining number distributions from the PGSTE data, through the use of scaling factors, were investigated.  相似文献   

11.
We report interesting self-assembly behavior of a polyglyceryl-modified silicone surfactant in the aqueous solution; the sample has been characterized through measurements of surface tension, transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle x-ray scattering (SAXS). Aqueous solutions of this surfactant had a low critical aggregation concentration (CAC) and surface tension (21.5 mN · m?1), substantially lower than those reported for polyether-modified silicone surfactants with a similar molecular architecture. DLS and TEM revealed self-assembled spherical micelles with a narrow size distribution. At higher concentrations (10 wt%), linear packing of micelles was observed, while the micelle size distribution remained similar (50–90 nm). SAXS data could be fitted through the use of a core–shell model and implied that the core radius remained roughly 4.3–6.0 nm for all solutions of the surfactant analyzed. The origin of its curious aggregates behavior is attributed to hydrogen bonding, steric effects, and the directionality of bond angle from the polyglyceryl block of this novel class of silicone surfactant. This type of surfactant coupling lipophilic segments assembles the cores of the micelles in water which may find positive factors for potential applications such as microreaction compartmentalization.  相似文献   

12.
Zhang Y  Dong L  Li J  Chen X 《Talanta》2008,76(2):246-253
In this study the interaction between gallic acid and human serum albumin (HSA) in AOT/isooctane/water microemulsions was characterized for the first time using fluorescence quenching technique in combination with UV absorption spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) technique. In water-surfactant molar ratio (omega(o))=20 microemulsions fluorescence data revealed the presence of one binding site of gallic acid on HSA and its binding constants (K) were (1.18+/-0.02)x10(4), (1.13+/-0.02)x10(4), (1.03+/-0.02)x10(4), (0.95+/-0.02)x10(4), (0.87+/-0.02)x10(4) and (0.82+/-0.03)x10(4)M(-1) at 282, 289, 296, 303, 310 and 317 K, respectively. The affinities in microemulsions were much higher than that in buffer solution. FT-IR and CD data suggested that the protein conformations were altered with the reductions of alpha-helices from 54-56% for free HSA in buffer to 40-41% for free HSA in microemulsion. After binding with gallic acid, the alpha-helices of HSA in microemulsion increased 2-7% for different drug-protein molar ratio. The thermodynamic functions standard enthalpy (Delta H(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -8.10 kJ mol(-1) and 49.42 J mol(-1)K(-1). These results indicated that gallic acid bound to HSA mainly by hydrophobic interaction and electrostatic interaction in microemulsions. In addition, the displacement experiments confirmed that gallic acid could bind to the site I of HSA, which was approved by the molecular modeling study. Furthermore, the DLS data suggested that HSA may locate at the interface of the microemulsion and gallic acid could interact with them.  相似文献   

13.
The simultaneous homogeneous and heterogeneous precipitation of hydrous Fe(III) oxides was investigated in the presence of environmentally ubiquitous anions (nitrate, chloride, and sulfate). Experiments were conducted with 10(-4) M Fe(III) at acidic pH (pH = 3.7 ± 0.2), which often occurs at acid mine drainage sites or geologic CO(2) storage aquifers near injection wells. Quartz was used as a model substrate for heterogeneous precipitation. Small angle X-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), atomic force microscopy (AFM), and dynamic light scattering (DLS) measurements were conducted. In situ SAXS/GISAXS quantified the size, total particle volume, number, and surface area evolutions of the primary nanoparticles formed in the nitrate and chloride systems. In both systems, the heterogeneously precipitated particles were smaller than the homogeneously precipitated particles. Compared with chloride, the volume of heterogeneously precipitated hydrous Fe(III) oxides on the quartz surface was 10 times more in the nitrate system. After initial fast heterogeneous nucleation in both nitrate and chloride systems, nucleation, growth, and aggregation occurred in the nitrate system, whereas Ostwald ripening was the dominant heterogeneous precipitation process in the chloride system. In the sulfate system, fast growth of the heterogeneously precipitated particles and fast aggregation of the homogeneously precipitated particles led to the formation of particles larger than the detection limit of GISAXS/SAXS. Thus, the sizes of the particles precipitated on quartz surface and in solution were analyzed with AFM and DLS, respectively. This study provides unique qualitative and quantitative information about the location (on quartz surfaces vs in solutions), size, volume, and number evolutions of the newly formed hydrous iron oxide particles in the presence of quartz substrate and ubiquitous anions, which can help in understanding the fate and transport of pollutants in the environment.  相似文献   

14.
Intrinsic viscosity, sedimentation, light scattering and osmotic pressure measurements have been made on dilute solutions of polycyclohexyl (PCy) and of polyphenyl methacrylates (PPh). Relations between (η), (S0), second virial coefficient and molecular weight have been established.  相似文献   

15.
The stability and state of aggregation of aqueous fibrinogen (FB) and dipalmitoylphosphatidylcholine (DPPC) vesicles in water or buffer at 25 degrees C were studied with dynamic light scattering (DLS), UV-vis spectroturbidimetry (ST), and cryo-transmission electron microscopy (cryo-TEM). In water, when 1000 ppm (0.10 wt %) DPPC dispersions were prepared with a protocol including extensive sonication, they contained mostly vesicles and were quite clear, transparent, and stable for at least 30 days. FB mixtures with water (0.075 wt %) were quite unstable and biphasic. They formed large aggregates which eventually precipitated. The addition of DPPC vesicles into these unstable FB dispersions reversed FB aggregation and precipitation and produced stable translucent microdispersions. The inferred lipid/protein aggregates were limited in size, with average diameters ranging from 200 to 300 nm. In buffer, DPPC dispersions were also clear and quite stable, with average dispersed particles diameter of ca. 90 nm. FB dissolved in aqueous buffer and formed transparent and stable solutions. Adding salt to an aggregated FB dispersion in water reversed the aggregation. FB aggregated and redissolved in the presence of the citrate and after the citrate was removed. There was no effect of citrate (present in FB initially) in the FB aggregation or redissolution. FB molecules in buffer form dimers or higher aggregates. Their average aggregation number is 2, determined with Rayleigh scattering analysis of turbidity data. The average hydrodynamic diameter of FB solutions from DLS was 30 nm. Mixing a stable FB solution in buffer and a stable DPPC dispersion in buffer produced highly unstable mixtures, in which large aggregates precipitated. These results have implications in understanding the interactions of lipids and proteins in many biological applications and food processing applications.  相似文献   

16.
The effects of pH and ultraviolet-B (UV-B) irradiation on the secondary structure of human serum albumin (HSA) in the absence or presence of captopril were investigated by an attenuated total reflection (ATR)/Fourier transform infrared (FTIR) spectroscopy. The UV-B exposure affecting the stability of captopril before and after captopril-HSA interaction was also examined by using confocal Raman microspectroscopy. The results indicate that the transparent pale-yellow solution for captopril-HSA mixture in all pH buffer solutions, except pH 5.0 approximately 7.0, changed into a viscous form then a gel form with UV-B exposure time. The secondary structural transformation of HSA in the captopril-HSA mixture with or without UV-B irradiation was found to shift the maxima amide I peak in IR spectra from 1652 cm(-1) assigned to alpha-helix structure to 1622 cm(-1) because of a beta-sheet structure, which was more evident in pH 3.0, 8.0 or 9.0 buffer solutions. The Raman shift from 1653 cm(-1) (alpha-helix) to 1670 cm(-1) (beta-sheet) also confirmed this result. Captopril dissolved in distilled water with or without UV-B irradiation was determined to form a captopril disulfide observed from the Raman spectra of 512 cm(-1), which was exacerbated by UV-B irradiation. There was little disulfide formation in the captopril-HSA mixture even with long-term UV-B exposure, but captopril might interact with HSA to change the protein secondary structure of HSA whether there was UV-B irradiation or not. The pH of the buffer solution and captopril-HSA interaction may play more important roles in transforming the secondary structure of HSA from alpha-helix to beta-sheet in the corresponding captopril-HSA mixture than UV-B exposure. The present study also implies that HSA has the capability to protect the instability of captopril in the course of UV-B irradiation. In addition, a partial unfolding of HSA induced by pH or captopril-HSA interaction under UV-B exposure is proposed.  相似文献   

17.
The aggregation behavior of short alkyl chain ionic liquids (ILs), namely 1-butyl, or 1-hexyl or 1-octylpyridinium and 1-octyl-2-, or -3-, or -4-methylpyridinium chlorides, in water has been assessed using surface tension, electrical conductance, (1)H NMR, small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) measurements. Critical aggregation concentrations (CACs), adsorption (at air/water interface) and thermodynamic parameters of aggregation have been reported. The values of CAC and area per adsorbed molecule decrease with the number of carbon atoms in the alkyl chain. The aggregation process is driven by both favorable enthalpy and entropy contributions. An attempt was made to examine the morphological features of the aggregates in water using SANS and SAXS methods. SANS and SAXS curves displayed diffuse structural peaks that could not be model fitted, and therefore, we calculated the mean aggregation numbers from the Q(max) assuming that IL molecules typically order into cubic type clusters.  相似文献   

18.
Combined measurements of piezoelectric quartz crystal impedance (PQCI) and electrochemical impedance spectrum (EIS) using a suitable isolation capacitance is reported for the first time to monitor in situ adsorption and acidic denaturation of human serum albumin (HSA) on gold electrodes in Britton-Robinson (B-R) buffers. This method provides simultaneously mutual-interference-free and accurate parameters of EIS and PQCI. Effects of surface thiol-modification, electrode-potential and solution pH on HSA adsorption were examined and discussed. Comparative experiments of HSA adsorption in a B-R buffer of pH 6.42 on bare, cysteine- and 1-dodecanethiol-modified gold electrodes revealed that HSA adsorption is more significant on a hydrophobic (1-dodecanethiol-modified) surface. Insignificant electrode-potential effect implied minor electrostatic effects on HSA adsorption. The adsorption amount of HSA at pH 3.28 was found to be notably greater than those at pH 4.84 and 6.42. To characterize HSA adsorption, electrode standard rate constants (ks) of the Fe(CN)63−/Fe(CN)64− couple were measured before and after HSA adsorption. The ks-pH curves on an HSA-modified Au electrode revealed that ks increased abruptly with the decrease of solution pH below pH ∼4. Moreover, pH-dependent responses of the resonant frequency, the motional resistance, the double-layer capacitance, the capacitance of adsorbed HSA layer and the peak absorbance of HSA solutions at 278 nm all exhibited an inflexion change at pH ∼4, and these findings have been explained on the basis of acidic denaturation of HSA and electrical charges carried by HSA molecules.  相似文献   

19.
X-ray Raman scattering (XRS) spectroscopy and small angle x-ray scattering (SAXS) are used to study water in aqueous solutions of NaCl, MgCl(2), and AlCl(3) with the particular aim to provide information about the structure of the hydration shells of the cations. The XRS spectra show that Na(+) weakens the hydrogen bonds of water molecules in its vicinity, similar to the effect of increased temperature and pressure. Mg(2+) and Al(3+), on the other hand, cause the formation of short and strong hydrogen bonds between the surrounding water molecules. The SAXS data show that Mg(2+) and Al(3+) form tightly bound hydration shells that give a large density contrast in the scattering data. From the form factors extracted from the SAXS data, we found that Mg(2+) and Al(3+) have, respectively, an equivalent of one and one and a half stable hydration shells that appear as a density contrast. In addition, we estimated that the density of water in the hydration shells of Mg(2+) and Al(3+) is, respectively, ~61% and ~71% higher than in bulk water.  相似文献   

20.
Water activity is an important macroscopic property of aerosol particles and droplets in the atmosphere as well as aqueous solutions in many other fields of physical chemistry. This study focuses on relating water activity, described using osmotic coefficients, to the microscopic water structure in systems of atmospheric relevance, namely, aqueous solutions of each of the four electrolytes: NaCl, (NH(4))(2)SO(4), NH(4)Cl, and Na(2)SO(4). The osmotic coefficients of these compounds, as reported in literature based on thermodynamic measurements, decrease as a function of molality for dilute solutions and increase as a function of molality for concentrated solutions. At an intermediate molality, a minimum value of the osmotic coefficient is observed. We explain this behavior by describing osmotic coefficients as the product of two concentration-dependent effects: incomplete electrolyte dissociation and variations in the microphysical water structure. The degree of dissociation in electrolyte solutions can be obtained directly from literature or derived from reported pK values, and in this work the water structure is quantified using low-wavenumber Raman spectroscopy. We use the band at 180 cm(-1) in Raman spectra of aqueous electrolyte solutions, which has been assigned to the displacement of the central oxygen atom in a tetrahedral hydrogen bonding environment composed of five H(2)O units. The abundance of such translationally restricted water molecules is essential in describing the local microphysical structure of water, and the height of the band is used to estimate the amount of such translationally restricted water molecules in solution. We were able to qualitatively reproduce and explain literature values of osmotic coefficients for the four studied electrolytes. Our results indicate that the effect of electrolyte dissociation, which decreases as a function of molality, dominates in dilute solutions, whereas changes in water structure are more significant at higher concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号