首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
With the modern development of infrared laser sources such as broadly tunable quantum cascade lasers and frequency combs, applications of infrared laser spectroscopy are expected to become widespread. Consequently, convenient infrared detectors are needed, having properties such as fast response, high efficiency, and room‐temperature operation. This work investigated conditions to achieve near‐room‐temperature photon‐noise‐limited performance of quantum well infrared photodetectors (QWIPs), in particular the laser power requirement. Both model simulation and experimental verification were carried out. At 300 K, it is shown that the ideal performance can be reached for typical QWIP designs up to a detection wavelength of 10 µm. At 250 K, which is easily reachable with a thermoelectric Peltier cooler, the ideal performance can be reached up to 12 µm. QWIPs are therefore suitable for detection and sensing applications with devices operating up to or near room temperature.  相似文献   

2.
Infrared emission from 980‐nm single‐mode high power diode lasers is recorded and analyzed in the wavelength range from 0.8 to 8.0 μm. A pronounced short‐wavelength infrared (SWIR) emission band with a maximum at 1.3 μm originates from defect states located in the waveguide of the devices. The SWIR intensity is a measure of the non‐equilibrium carrier concentration in the waveguide, allowing for a non‐destructive waveguide mapping in spatially resolved detection schemes. The potential of this approach is demonstrated by measuring spatially resolved profiles of SWIR emission and correlating them with mid‐wavelength infrared (MWIR) thermal emission along the cavity of devices undergoing repeated catastrophic optical damage. The enhancement of SWIR emission in the damaged parts of the cavity is due to a locally enhanced carrier density in the waveguide and allows for an analysis of the spatial damage patterns. The figure shows a side view of a diode laser during catastrophic degradation as recorded by a thermocamera within 5 successive current pulses. The geometry of the device is given in grayscale. The position of the laser chip is indicated by the dotted line. The thermal signatures of the internal degradation of the diode laser are overlaid in color. The bi‐directional spread of the damage along the laser cavity is clearly visible.  相似文献   

3.
Synchronous digitization, in which an optical sensor is probed synchronously with the firing of an ultrafast laser, was integrated into an optical imaging station for macromolecular crystal positioning prior to synchrotron X‐ray diffraction. Using the synchronous digitization instrument, second‐harmonic generation, two‐photon‐excited fluorescence and bright field by laser transmittance were all acquired simultaneously with perfect image registry at up to video‐rate (15 frames s?1). A simple change in the incident wavelength enabled simultaneous imaging by two‐photon‐excited ultraviolet fluorescence, one‐photon‐excited visible fluorescence and laser transmittance. Development of an analytical model for the signal‐to‐noise enhancement afforded by synchronous digitization suggests a 15.6‐fold improvement over previous photon‐counting techniques. This improvement in turn allowed acquisition on nearly an order of magnitude more pixels than the preceding generation of instrumentation and reductions of well over an order of magnitude in image acquisition times. These improvements have allowed detection of protein crystals on the order of 1 µm in thickness under cryogenic conditions in the beamline. These capabilities are well suited to support serial crystallography of crystals approaching 1 µm or less in dimension.  相似文献   

4.
The carbon‐rich silicon carbide (C‐rich SixC1?x) micro‐ring channel waveguide with asymmetric core aspect is demonstrated for all‐optical cross‐wavelength pulsed return‐to‐zero on‐off keying (PRZ‐OOK) data conversion. Enhanced nonlinear optical Kerr switching enables 12‐Gbit per second data processing with optimized modulation depth. The inverse tapered waveguide at end‐face further enlarges the edge‐coupling efficiency, and the asymmetric channel waveguide distinguishes the polarization modes. To prevent data shape distortion, the bus/ring gap spacing is adjusted to control the quality factor (Q‐factor) of the micro‐ring. Designing the waveguide cross section at 500 × 350 nm2 provides the C‐rich SixC1?x channel waveguide to induce strong transverse electric mode (TE‐mode) confinement with a large Kerr nonlinearity of 2.44 × 10?12 cm2 W?1. Owing to the trade‐off between the Q‐factor and the on/off extinction ratio, the optimized bus/ring gap spacing of 1400 nm is selected to provide a coupling ratio at 5–6% for compromising the modulation depth and the switching throughput. Such a C‐rich SixC1?x micro‐ring with asymmetric channel waveguide greatly enhances the cross‐wavelength data conversion efficiency to favor its on‐chip all‐optical data processing applications for future optoelectronic interconnect circuits.  相似文献   

5.
BioCARS, a NIH‐supported national user facility for macromolecular time‐resolved X‐ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator‐based beamline optimized for single‐shot laser‐pump X‐ray‐probe measurements with time resolution as short as 100 ps. The source consists of two in‐line undulators with periods of 23 and 27 mm that together provide high‐flux pink‐beam capability at 12 keV as well as first‐harmonic coverage from 6.8 to 19 keV. A high‐heat‐load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X‐ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high‐speed chopper isolates single X‐ray pulses at 1 kHz in both hybrid and 24‐bunch modes of the APS storage ring. In hybrid mode each isolated X‐ray pulse delivers up to ~4 × 1010 photons to the sample, thereby achieving a time‐averaged flux approaching that of fourth‐generation X‐FEL sources. A new high‐power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage‐ring RF clock with long‐term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.  相似文献   

6.
Silicon waveguide polarizers offer a simple yet robust approach to address the polarization‐dependent issue of silicon‐based optical components, and hence have found numerous applications in silicon photonics. However, the available silicon waveguide polarizers suffer from the issue of large device footprint, high insertion loss (IL), and/or fabrication complexities. Here, a silicon waveguide transverse magnetic (TM)‐pass polarizer is constructed by coating a silicon waveguide with an ultra‐thin plasmonic metasurface structure that is capable of guiding slow surface wave (SW) mode. The transverse electric (TE) waveguide mode can be converted into SW mode with the involvement of metasurfaces, and hence is intrinsically absorbed and forbidden to pass, while the TM waveguide mode can be well guided due to little influence. A typical metasurface polarizer with an ultra‐short length of 2.4 µm enables the IL of 28.16 dB for the TE mode, and that of 0.53 dB for the TM mode at 1550 nm. Multiple‐band TM‐pass polarizers can be obtained by cascading two or more different metasurface‐coated silicon waveguides along the propagation direction, and a dual‐band TM‐pass polarizer is demonstrated with the IL being of 19.21 and 29.09 dB for the TE mode at 1310 and 1550 nm, respectively.  相似文献   

7.
We report a high‐repetition‐rate picosecond fiber‐based source at 2.1 µm offering exceptional performance capabilities over existing lasers near this wavelength, providing high average power and efficiency together with excellent spectral, power and beam pointing stability, in high spatial beam quality. This new source is based on a near‐degenerate MgO:PPLN optical parametric oscillator (OPO) pumped by an Yb‐fiber laser at 1064 nm, and incorporating a diffraction grating for spectral control. The device provides as much as 7.1 W of average power at 2.1 µm for a pump power of 18 W at an extraction efficiency of 39.4% in pulses of 20 ps at 79.3 MHz. The output exhibits passive power stability better than 1% rms over 15 hours, and a beam pointing stability ∼40 µrad over 1 hour, in high spatial quality with M2 ∼ 3.5. The output beam is linearly polarized and the pulse train has an amplitude stability better than 3.4% rms over 2 µsec. Radio‐frequency measurements of the output pulse train also confirm high temporal stability and low timing jitter, indicating that the source is ideal for variety of applications including pumping long‐wavelength mid‐infrared OPOs. Photograph shows the temperature‐controlled, 50‐mm‐long MgO:PPLN crystal inside the cavity, used as nonlinear gain medium in the picosecond source operating at 2.1 µm. The visible light is the result of non‐phase‐matched second harmonic generation of the pump beam in the MgO:PPLN crystal.

  相似文献   


8.
《X射线光谱测定》2004,33(5):360-371
Systematic investigations of the width dependence on the x‐ray beam propagation mechanism for a narrow extended slit formed by two plane dielectric plates are presented. It is shown that the mechanism of a multiple consecutive total reflection for Cu Kα radiation dominates in a slit width range s ≥ 3 µm. At the same time the manner of Cu Kα radiation propagation for super‐narrow slits s ≤ 0.1 µm is very different from the multiple total reflection mechanism. The x‐ray beam intensity proves to be constant for all this range of magnitude. This gives grounds to expect that the super‐narrow slit area is characterized by a specific type of mechanism of x‐ray beam propagation: waveguide‐resonance. A simple model for the waveguide‐resonance propagation mechanism based on the formation of a uniform x‐ray standing wave interference field in the total space of a narrow extended slit was developed. The design of a new x‐ray optical device, namely a planar x‐ray waveguide‐resonator, is proposed based on the waveguide‐resonance mechanism. Some properties of the composite planar x‐ray waveguide‐resonator are discussed. It is shown that under specific conditions the composite waveguide can demonstrate a partial tunneling effect of the x‐ray beam. The main applications of the new technique are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
We evaluate industrial‐type PERC solar cells applying a 5 busbar front grid and fineline‐printed Ag fingers. We obtain finger widths down to 46 µm when using a stencil with 40 µm opening for the finger print, whereas the busbar is printed in a separate printing step with a different Ag paste (dual print). This compares to finger widths of 62 µm to 66 µm when applying print‐on‐print. The 5 busbar front grid with the best dual print process reduces the shadowing loss of the front grid to 4.0% compared to 5.8% for a conventional 3 busbar front grid printed with print‐on‐print. The 1.8% reduction in shadowing loss results in equal parts from the reduced finger width with dual print as well as from a reduced total busbar width of the 5 busbar design. The resulting PERC solar cells with 5 busbars demonstrate independently confirmed conversion efficiencies of 21.2% compared to 20.6% efficiency of the 3 busbar PERC solar cell. The increased conversion efficiency is primarily due to an increased short‐circuit current resulting from the reduced shadowing loss. To our knowledge, 21.2% conversion efficiency is the highest value reported so far for industry typical silicon solar cells with printed metal front and rear contacts. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
The integration of microfluidic devices with micro X‐ray fluorescence (micro‐XRF) spectrometry offers a new approach for the direct characterization of liquid materials. A sample presentation method based on use of small volumes (<5 µl) of liquid contained in an XRF‐compatible device has been developed. In this feasibility study, a prototype chip was constructed, and its suitability for XRF analysis of liquids was evaluated, along with that of a commercially produced microfluidic device. Each of the chips had an analytical chamber which contained approximately 1 µl of sample when the device was filled using a pipette. The performance of the chips was assessed using micro‐XRF and high resolution monochromatic wavelength dispersive X‐ray fluorescence, a method that provides highly selective and sensitive detection of actinides. The intended application of the device developed in this study is for measurement of Pu in spent nuclear fuel. Aqueous solutions and a synthetic spent fuel matrix were used to evaluate the devices. Sr, which has its Kα line energy close to the Pu Lα line at 14.2 keV, was utilized as a surrogate for Pu because of reduced handling risks. Between and within chip repeatability were studied, along with linearity of response and accuracy. The limit of detection for Sr determination in the chip is estimated at 5 ng/µl (ppm). This work demonstrates the applicability of microfluidic sample preparation to liquid characterization by XRF, and provides a basis for further development of this approach for elemental analysis within a range of sample types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A theoretical design of a defect ring optical waveguide network is proposed to construct a pump‐free ultrahigh efficiency all‐optical switch. This switch creates ultrastrong photonic localization and causes the nonlinear dielectric in the defect waveguide to intensely respond. At its ON state, this material defect without Kerr response helps to produce a pair of sharp pass bands in the transmission spectrum to form the dual channel of the all‐optical switch. When it is switched to its OFF state, the strong Kerr response induced refractive index change in the high nonlinear defect waveguide strongly alters the spectrum, leading to a collapse of the dual channels. Network equation and generalized eigenfunction method are used to numerically calculate the optical properties of the switch and obtain a threshold control energy of about 2.90 zJ, which is eight orders of magnitude lower than previously reported. The switching efficiency/transmission ratio exceeds 3× 1011, which is six orders of magnitude larger than previously reported. The state transition time is nearly 108 fs, which is approximately two orders of magnitude faster than the previously reported shortest time. Furthermore, the switch size can be much smaller than 2.6 µm and will be suitable for integration.  相似文献   

12.
An integrated photonic‐on‐a‐chip device based on a single organic‐inorganic di‐ureasil hybrid was fabricated for optical waveguide and temperature sensing. The device is composed by a thermal actuated Mach‐Zehnder (MZ) interferometer operating with a switching power of 0.011 W and a maximum temperature difference between branches of 0.89 ºC. The MZ interferometer is covered by a Eu3+/Tb3+ co‐doped di‐ureasil luminescent molecular thermometer with a temperature uncertainty of 0.1ºC and a spatial resolution of 13 µm. This is an uncommon example in which the same material (an organic‐inorganic hybrid) that is used to fabricate a particular device (a thermal‐actuated MZ interferometer) is also used to measure one of the device intrinsic properties (the operating temperature). The photonic‐on‐a‐chip example discussed here can be applied to sense temperature gradients with high resolution (10−3 ºC·µm−1) in chip‐scale heat engines or refrigerators, magnetic nanocontacts and energy‐harvesting machines.  相似文献   

13.
The aim of the work was to develop a Monte Carlo (MC) method and combine it with micro‐beam X‐ray fluorescence (XRF) technique for determination of chemical composition of individual particles. A collection of glass micro‐spheres, made of NIST (National Institute of Standards and Technoly) K3089 material of known chemical composition, with diameters in the range of 25–45 µm was investigated. The micro‐spheres were measured in a scanning micro‐beam XRF spectrometer utilising X‐ray tube as a source of primary radiation. Results obtained for low Z elements showed high dependence on particle size. It was found that the root mean square of concentration uncertainty, for the all elements present in the particle, increases with growing sample size. More accurate results were obtained for high Z elements such as Fe–Pb, as compared to others. The elemental percentage uncertainty did not exceed 14% for any particular sample and 6% for the whole group of the measured micro‐spheres as an average. Results obtained by the Monte Carlo method were compared with other analytical approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Some theoretical and practical aspects of the application of transmission microdiffraction (µXRD) to thin sections (≤30 µm thickness) of samples fixed or deposited on substrates are discussed. The principal characteristic of this technique is that the analysed micro‐sized region of the thin section is illuminated through the substrate (tts‐µXRD). Fields that can benefit from this are mineralogy, petrology and materials sciences since they often require in situ lateral studies to follow the evolution of crystalline phases or to determine new crystal structures in the case of phase transitions. The capability of tts‐µXRD for performing structural studies with synchrotron radiation is shown by two examples. The first example is a test case in which tts‐µXRD intensity data of pure aerinite are processed using Patterson‐function direct methods to directly solve the crystal structure. In the second example, tts‐µXRD is used to study the transformation of laumonite into a new aluminosilicate for which a crystal structure model is proposed.  相似文献   

15.
We applied proton microbeam particle‐induced X‐ray emission (µ‐PIXE) for mapping Ca, Zr, Ba and Yb, and atomic force microscopy (AFM) for imaging the surface landscape of a dental composite which releases Ca2+ and F? for the protection of hard dental tissues. Three areas ~250 × 250 µm2 located ~0.5–2 mm apart on a smooth surface specimen were mapped with 3.1 MeV protons focused to a ~3.0 µm spot and at ~3.9 µm pixel size sampling. The maps evidenced particles with diameters of 3.2–32 µm (Ca), 20–60 µm (Zr), ≤ 4 µm (Ba) and 10–50 µm (Yb). Cross‐section area histograms of Ca‐rich particles fitted with 2–6 Poisson functions revealed a polydisperse size distribution and substantial differences from an area to another, possibly implying large local variations of Ca2+ released in the hard tissue near a dental filling of a few millimeters in diameter. Such imbalances may lead to low local Ca2+ protection of the dental tissue, favoring the onset of secondary caries. Similarly, AFM images showed high zone‐dependent differences in the distributions of grains with apparent diameters of 1–4 µm, plausibly recognized as Ca‐ and Ba‐containing particles. In a simple model based on demineralization data, lateral diffusion of Ca2+ between adjacent domains containing high‐ and low‐area Ca‐rich grains is described by exponential concentration gradients. These gradients may generate appreciable electromotive forces, which may enhance electrochemically the local tissue demineralization. Similar effects are to be expected in the protective action of F? ions released from microgranules of YbF3 and of Ba fluoroaluminosilicate glass. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A micro test pattern prepared by focused ion beam milling was used to evaluate the three‐dimensional resolution of a microtomograph at the BL20B2 beamline of SPring‐8. The resolutions along the direction within the tomographic slice plane and perpendicular to it were determined from the modulation transfer functions. The through‐plane resolution perpendicular to the tomographic slice was evaluated to be 8 µm, which corresponds to the spatial resolution of two‐dimensional radiographs. In contrast, the in‐plane resolution within the slice was evaluated to be 12 µm. Real‐space interpolation was performed prior to the tomographic reconstruction, giving an improved in‐plane resolution of 8.5 µm. However, the 8 µm pitch pattern was resolved in the interpolated slice image. To reflect this result, another resolution measure from the peak‐to‐valley difference plot was introduced. This resolution measure gave resolution limits of 7.4 µm for the in‐plane direction and 6.1 µm for the through‐plane direction. The three‐dimensional test pattern along with the interpolated reconstruction enables the quantitative evaluation of the spatial resolution of microtomographs.  相似文献   

17.
Fabrication and results of high‐resolution X‐ray topography characterization of diamond single‐crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high‐heat‐load X‐ray crystal optics are reported. The plates were fabricated by laser‐cutting of the (111) facets of diamond crystals grown using high‐pressure high‐temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront‐preserving high‐heat‐load crystal optics. Wavefront characterization was performed using sequential X‐ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking‐curve topography. The variations of the rocking‐curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.  相似文献   

18.
The quantification of micro‐vasculatures is important for the analysis of angiogenesis on which the detection of tumor growth or hepatic fibrosis depends. Synchrotron‐based X‐ray computed micro‐tomography (SR‐µCT) allows rapid acquisition of micro‐vasculature images at micrometer‐scale spatial resolution. Through skeletonization, the statistical features of the micro‐vasculature can be extracted from the skeleton of the micro‐vasculatures. Thinning is a widely used algorithm to produce the vascular skeleton in medical research. Existing three‐dimensional thinning methods normally emphasize the preservation of topological structure rather than geometrical features in generating the skeleton of a volumetric object. This results in three problems and limits the accuracy of the quantitative results related to the geometrical structure of the vasculature. The problems include the excessively shortened length of elongated objects, eliminated branches of blood vessel tree structure, and numerous noisy spurious branches. The inaccuracy of the skeleton directly introduces errors in the quantitative analysis, especially on the parameters concerning the vascular length and the counts of vessel segments and branching points. In this paper, a robust method using a consolidated end‐point constraint for thinning, which generates geometry‐preserving skeletons in addition to maintaining the topology of the vasculature, is presented. The improved skeleton can be used to produce more accurate quantitative results. Experimental results from high‐resolution SR‐µCT images show that the end‐point constraint produced by the proposed method can significantly improve the accuracy of the skeleton obtained using the existing ITK three‐dimensional thinning filter. The produced skeleton has laid the groundwork for accurate quantification of the angiogenesis. This is critical for the early detection of tumors and assessing anti‐angiogenesis treatments.  相似文献   

19.
We present a‐Si:H/µc‐Si:H tandem solar cells on laser textured ZnO:Al front contact layers. Direct pulsed laser interference patterning (DLIP) was used for writing arrays of one‐dimensional micro gratings of submicron period into ZnO:Al films. The laser texture provides good light trapping which is indicated by an increase in short‐circuit current density of 20% of the bottom cell limited device compared to cells on planar ZnO:Al. The open‐circuit voltage of the cells on laser textured ZnO:Al is almost the same as for cells on planar substrates, indicating excellent growth conditions for amorphous and microcrystalline silicon on the U‐shaped grating grooves. DLIP is a simple, single step and industrially applicable method for large area periodic texturing of ZnO:Al thin films. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
X‐ray Fluorescence (XRF) with a scanning electron microscope (SEM) is a valuable completion of the analytical capabilities of SEMs. Small and compact micro‐focus x‐ray sources are mounted to the microscope chamber, and the x‐ray spectra are monitored with conventional EDS systems. Up to now the x‐ray tubes used for the micro‐focus x‐ray sources are equipped with beryllium windows about 100 µm thick. The poly‐capillary x‐ray lenses have their transmission maximum at photon energies around 10 keV. It drops down in both low‐ and high‐energy ranges. Hence, L‐radiation from an Mo or Rh target will be strongly attenuated, and the excitation of fluorescence in the soft x‐ray range becomes very ineffective. A new micro‐focus x‐ray source was developed. It is characterised by a lower self‐absorption in the tube target, thin beryllium windows and an x‐ray optics having a large distance between its foci and the maximum of transmission at about 5 keV. Thus K line fluorescence of light elements becomes effectively excited by the L‐radiation from Mo or Rh tube targets. The detection limit for sodium oxide in glass was found to be below 1 mass%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号