首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
We investigate the variations from as-deposited Zn1-x: Cox O magnetic semiconductors to the post-annealed Co- ZnCoO granular composite. The as-deposited Zn1-x Cox 0 magnetic semiconductor deposited under thermal nonequilibrium conditions is composed of Zn1-x. Cox O nanograins of high Co concentration. The room-temperature ferromagnetism with high magnetization and large negative magnetoresistance are found in the as-deposited samples. By annealing, the samples become of granular composite consisting of the Co metal grains and the remanent Zn1-x CoxO matrix. Although the magnetization is enhanced after annealing, the spin-dependent negative magnetoresistance disappears at room temperature. The magnetoresistance observed in the annealed samples in the high field region has no relation with the ferromagnetism, which in turn indicates that the roomtemperature ferromagnetism and large negative magnetoresistance observed in the as-deposited are the intrinsic properties of the Zn1-x Cox O magnetic semiconductor.  相似文献   

2.
Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and Raman spectroscopy are employed to characterize the microstructural properties of these films. Room temperature ferromagnetism is observed by superconducting quantum interference device (SQUID). The results indicate that Mn doping introduces the incorporation of Mn^2+ ions into the ZnO host matrix and the insertion of Mn^2+ ions increases the lattice defects, which is correlated with the ferromagnetism of the obtained films. The doping concentration is also proven to be a crucial factor for obtaining highly ferromagnetic Zn1-xMnxO films.  相似文献   

3.
Structural and magnetic properties of Fe-doped anatase TiO2 films fabricated by sol-gel spin coating are investigated. X-ray diffraction measurements reveal that Fe^3+ ions are incorporated into the TiO2 lattice. No ferromagnetism-related secondary phases and magnetic nanopaxticles are observed in the films. The presence of electron paramagnetic resonance signals at 9- 2.0 supports oxygen vacancies and/or defects generated in the films after annealing in vacuum. Magnetic measurements indicate that Fe-doped anatase TiO2 films are ferromagnetic at room temperature. These observations suggest that oxygen vacancies and/or defects axe energetically favorable for the long range Fe^3+-Fe^3+ ferromagnetic coupling in Fe-doped anatase TiO2 films.  相似文献   

4.
The diluted magnetic semiconductor Ga1-xMnxN was achieved by low-pressure metal organic vapour-phase epitaxy (LP-MOVPE). Proton-induced x-ray emission was employed non-destructively, quickly and accurately to determine the Mn-doped content. The magnetic property was measured by a superconducting-quantum-interference-device (SQID) magnetometer. Apparent ferromagnetic hysteresis loops measured at or above room temperature are presented. No ferromagnetic secondary phases were detected by high-resolution x-ray diffraction. The experimental results show that the ferromagnetic signal firstly decreases and then increases with the increasing Mn-doped content from 0.23% to 4.69% and it is the weakest when Mn content is 0.51%. The annealing treatment could make the ferromagnetic property stronger.  相似文献   

5.
Zn1-xCoxO (x = 0.01, 0.02, 0.05, 0.10 and 0.20) diluted magnetic semiconductors are prepared by the sol-gel method. The structural and magnetic properties of the samples are studied using x-ray diffraction (XRD), extended x-ray absorption fine structure (EXAFS) and superconducting quantum interference device (SQUID). The XRD patterns does not show any signal of precipitates that are different from wurtzite type ZnO when Co content is lower than x = 0.10. An EXAFS technique for the Co K-edge has been employed to probe the local structures around Co atoms doped in ZnO powders by fluorescence mode. The simulation results for the first shell EXAFS signals indicate that Zn sites can be substituted by Co atoms when Co content is lower than x = 0.05. The SQUID results show that the samples (x 〈 0.05) exhibit clear hysteresis loops at 300K, and magnetization versus temperature from 5 K to 350K at H = 100 Oe for the sample x = 0.02 shows that the samples have ferromagnetism above room temperature. A double-exchange mechanism is proposed to explain the ferromagnetic properties of the samples.  相似文献   

6.
Thin films of Zn1−xMnxO (x=0.01) diluted magnetic semiconductor were prepared on Si (1 0 0) substrates by the sol-gel method. The influence of annealing temperature on the structural, optical and magnetic properties was studied by X-ray diffraction (XRD), atom force microscopy (AFM), photoluminescence (PL) and SQUID magnetometer (MPMS, Quantum Design). The XRD spectrum shows that all the films are single crystalline with (0 0 2) preferential orientation along c-axis, indicating there are not any secondary phases. The atomic force microscopy images show the surfaces morphologies change greatly with an increase in annealing temperature. PL spectra reveal that the films marginally shift the near band-edge (NBE) position due to stress. The magnetic measurements of the films using SQUID clearly indicate the room temperature ferromagnetic behavior, and the Curie temperature of the samples is above room temperature. X-ray photoelectron spectroscopy (XPS) patterns suggest that Mn2+ ions were successfully incorporated into the lattice position of Zn2+ ions in ZnO host. It is also found that the post-annealing treatment can affect the ferromagnetic behavior of the films effectively.  相似文献   

7.
Powder neutron diffraction and magnetic studies have been performed for NdMn0.5Fe0.5O3 and NdMn0.5Cr0.5O3 manganites. In NdMn0.5Cr0.5O3, magnetic structure has been revealed consisting of ferromagnetic and G-type antiferromagnetic components as result of a 3d-ions magnetic moments ordering. Magnetic moments of Nd-ions are parallel to the ferromagnetic component. In NdMn0.5Fe0.5O3 only the antiferromagnetic G-type structure has been found whereas Nd-sublattice was not ordered. In the both compounds, magnetic moments of 3d-ions are significantly less than one can expect, what is interpreted in terms of intrinsic chemical inhomogeneity. Magnetic phase diagrams have been constructed for the Nd(Mn1−xMx)O3 (M=Fe, Cr) systems, interpreted assuming superexchange interactions Mn3+–O–Cr3+ to be positive, Mn3+–O–Fe3+ negative and taking into account a disordered arrangement of Mn and Cr ions in the crystal structure sublattice as well as interplay between Jahn–Teller effect and superexchange interactions.  相似文献   

8.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

9.
A series of samples ZnxFe3−xO4 have been prepared by the chemical coprecipitation technique and characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM) and X-ray photoelectron spectroscopy (XPS). XRD demonstrates all the samples of ZnxFe3−xO4 have a spinel structure same as Fe3O4. The magnetic hysteresis loops of ZnxFe3−xO4 obtained from VSM indicate that the saturation magnetization has a maximum when x is ∼1/3. The chemical states of Fe atoms and Zn atoms in zinc ferrites have been measured using XPS and Auger electron spectroscopy (AES). The Fe 2p core-level XPS spectra and Zn L3M45M45 Auger peaks have been analyzed and the results have been discussed in correlation with the samples’ magnetic properties. These results suggest most of Zn atoms occupy the tetrahedral sites and a small amount of them occupy the octahedral sites.  相似文献   

10.
用溶剂热合成法在160oC制备出Zn1-xMnxO纳米棒和Zn1-2xMnxLixO纳米颗粒. XRD和拉曼测试结果表明Mn离子已很好地掺入ZnO母体中. M-H图中未观察到磁回滞,ESR谱中的精细结构说明掺杂的Mn离子间没有铁磁相互作用. 共掺Li仅仅改变了产物的形貌,并不能改变其磁学性质.  相似文献   

11.
In attempt to characterise the magnetic ordering in the whole composition range of the Cd1−xZnxCr2Se4 system, various magnetic measurements were performed on both crystalline and polycrystalline samples with 0?x?1. The magnetic properties of the system are typical of a ferromagnet below x=0.4 and of a complex antiferromagnet one above x=0.6. In this work the intermediate region was carefully studied. The variations of both M(T) and χac at low fields suggest that transitions from ferromagnetic to Gabay–Toulouse ferromagnetic-spin-glass mixed phase at low temperature occur in the range 0.41?x?0.58. The high-temperature susceptibility measurements show that for the whole concentration range the system obeys Curie–Weiss laws. The results can be explained by the coexistence of competing interactions (ferromagnetic between nearest neighbours and antiferromagnetic between higher order neighbours) and disorder due to the random substitution between zinc and cadmium ions in the tetrahedral sites of the spinel lattice. An experimental magnetic phase diagram of the system is established.  相似文献   

12.
The local atomic arrangement and electronic structure of the Co-doped Zn1−xCoxO nanocrystal have been quantitatively examined along with its magnetic properties. According to our analysis using powder X-ray diffraction, electron microscopy, and Zn K-edge X-ray absorption spectroscopy (XAS), phase-pure wurzite-structured Zn1−xCoxO nanocrystals have been successfully synthesized via the molten-salt method. The Co K-edge XAS analysis clearly demonstrates that all the Co2+ ions are substituted for the tetrahedral Zn sites of the Wurzite structure with a coordination number of 3.9 and a bond distance of 1.97 Å, ruling out the presence of magnetic impurity phase and Co-metal cluster. Magnetization measurements reveal that the present Zn1−xCoxO sample does not show any ferromagnetic transition down to 2 K. In this regard, we can conclude that Co-doped zinc oxide is not ferromagnetic but the previously reported ferromagnetism in this phase would be an extrinsic property.  相似文献   

13.
Preliminary magnetic data of TlCu2-xFexSe2 (x=0.25 and 0.5) are presented. Antiferromagnetic behaviour is observed for x=0.5. For x=0.25 antiferromagnetism occurs up to 30 K. Between 30 and 68 K ferromagnetism is observed. Below 30 K the application of external fields brings about an irreversible transition from antiferromagnetic to ferromagnetic.  相似文献   

14.
The electronic structure and magnetism of SmCo7-xZrx alloy are investigated using the spin-polarized MS-X. method. The results show that a few of electrons are transferred to the Sm(5d0) orbital due to orbital hybridization between Sm and Co atoms. The exchange interactions between 3d and 5d electrons are more important than the polarization effects of the conductive electrons, thus it is the main reason resulting in the long-range ferromagnetic order in SmCo7-xZrx. The Curie temperature of SmCo7-xZrx is generally lower than that of corresponding pure Co, which may be explained by the weaker average coupling strength between Co lattices due to some negative couplings mainly occurring of 2e site. The calculated results for the Sm5Co32Zr2 cluster may lead to a better understanding of why SmCo7-xZrx is stable phase. Since the spin-up DOS peak of d electrons at EF arises and the bonding of electrons at EF strengthens with increasing Zr concentration, which results in the internal energy of the system decrease, the stable ferromagnetic order forms in SmCo7-xZrx.  相似文献   

15.
The electronic structures and magnetic properties of Zn1−xCoxO (x=5.55%,8.33%,12.5%) are studied using first-principles calculations in combination with Monte Carlo (MC) simulation. The combinational method makes possible a complete simulation from the microscopic magnetic interaction to macroscopic magnetic behavior. The calculated results from first principles indicate that the ferromagnetic ground state is stabilized by a half-metallic electronic structure which originates from the strong hybridization between Co 3d electrons and O 2p electrons. With the magnetic coupling strengths obtained from first-principles calculations, the MC simulation predicts the ferromagnetism of Zn1−xCoxO (x=5.55%,8.33%,12.5%) with , which is consistent with the experimental facts.  相似文献   

16.
Well-dispersed Fe3O4 nanoparticles are synthesized via an oxidization method with NANO2 as oxidant. The microwave magnetic properties of the composites are studied with different volume fractions of fe3O4 nanoparticles. It is found that a lower volume fraction corresponds to a higher magnetic resonance frequency. This could be ascribed to the enhancement of exchange interaction with a weakened dipolar interaction when the volume fraction decreases.  相似文献   

17.
We tried to prepare the bulk dilute ferromagnetic semiconductor (DMS) by mechanical milling (MM). Experimental results were as following: (1) The observation of X-ray diffraction and transmitting electron microscopy showed that the particle diameter of host ZnO powder were reduced to about 10 nm by MM. (2) The MM for the mixtures of V2O5/ZnO or γ-Fe2O3/ZnO realizes the V- or Fe-doped ZnO nano-powders. (3) The values of magnetization under the field of 5 kOe were nearly saturated to 0.8×10−3 to 3×10−3 μB/V-ion for VxZn1−xO (x=0.05, 0.1 and 0.2), and 0.2–0.3 μB/Fe-ion for FexZn1−xO (x=0.05 and 0.1) at room temperature. The above results show that the ferromagnetic DMS powder of VxZn1−xO and FexZn1−xO were successfully prepared by MM method.  相似文献   

18.
We report on the ferromagnetic characteristics of Zn1−xMnxO films (x=0.1-0.3) prepared by the sol-gel method on silicon substrates using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Magnetic measurement show that the Curie temperature (TC) and the coercive field (HC) were ∼39 K and ∼2100 Oe for the film of x=0.2, respectively. EDS and TEM measurements indicate that Mn content at the interface is significantly higher than that at the center of the Zn0.8Mn0.2O film showing the ratio, Zn:Mn:O≅1:12:15. This experimental evidence suggests that ferromagnetic precipitates containing manganese oxide may be responsible for the observed ferromagnetic behavior of the film.  相似文献   

19.
We studied the magnetic and noise properties with various soft underlayer (SUL) types. For an as-deposited SUL, the results of spectrum, oscilloscope waveform and MFM indicated that the SUL types with IrMn pinning layer have more noise level than that of SUL types without IrMn pinning layer. And, after magnetic filed annealing along radial direction of disk, the exchange bias field increased and the noise level of type B (exchange bias type) decreased. These results reveal that incomplete or partial coupling may be generated at the interface between IrMn and ferromagnetic layer in as-deposited SUL. This incomplete coupling may result in complex or multidomain patterns in ferromagnetic layer.  相似文献   

20.
Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Znl-xMn.O films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn^2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号