首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Santanu K. Maiti   《Solid State Communications》2009,149(47-48):2146-2150
NOR gate response in a double quantum ring, where each ring is threaded by a magnetic flux , is investigated. The double quantum ring is sandwiched symmetrically between two semi-infinite one-dimensional metallic electrodes, and two gate voltages, namely, Va and Vb, are applied, respectively, in lower arms of the two rings those are treated as the two inputs of the NOR gate. A simple tight-binding model is used to describe the system, and all the calculations are done through the Green’s function formalism. Here we calculate exactly the conductance–energy and current–voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our numerical study predicts that, for a typical value of the magnetic flux =0/2 (0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if both the inputs to the gate are low (0), while if one or both are high (1), a low output current (0) results. It clearly demonstrates the NOR gate behavior, and this aspect may be utilized in designing an electronic logic gate.  相似文献   

2.
Santanu K. Maiti   《Solid State Communications》2009,149(39-40):1684-1688
We explore the OR gate response in a mesoscopic ring threaded by a magnetic flux . The ring is symmetrically attached to two semi-infinite one-dimensional metallic electrodes, and two gate voltages, Va and Vb, are applied in one arm of the ring; these are treated as the two inputs of the OR gate. All the calculations are based on the tight-binding model and the Green’s function method, which numerically compute the conductance–energy and current–voltage characteristics as functions of the gate voltages, ring-to-electrode coupling strengths and magnetic flux. Our theoretical study shows that, for =0/2 (0=ch/e, the elementary flux-quantum), a high output current (1) (in the logical sense) appears if one or both the inputs to the gate are high (1), while if neither input is high (1), a low output current (0) appears. It clearly demonstrates the OR gate behavior, and this aspect may be utilized in designing an electronic logic gate.  相似文献   

3.
We explore AND gate response in a double quantum ring where each ring is threaded by a magnetic flux ?. The double quantum ring is attached symmetrically to two semi-infinite one-dimensional metallic electrodes and two gate voltages, namely, Va and Vb, are applied, respectively, in the lower arms of the two rings which are treated as two inputs of the AND gate. The system is described in the tight-binding framework and the calculations are done using the Green's function formalism. Here we numerically compute the conductance-energy and current-voltage characteristics as functions of the ring-to-electrode coupling strengths, magnetic flux and gate voltages. Our study suggests that, for a typical value of the magnetic flux ?=?0/2 (?0=ch/e, the elementary flux-quantum) a high output current (1) (in the logical sense) appears only if both the two inputs to the gate are high (1), while if neither or only one input to the gate is high (1), a low output current (0) results. It clearly demonstrates the AND gate behavior and this aspect may be utilized in designing an electronic logic gate.  相似文献   

4.
Nonlinear I–V characteristics of YBa2Cu3O y epitaxial film at different temperatures in a magnetic field of up to 5T and angles between the direction of the field and the a–b plane of 0°, 30°, 45°, 60°, and 90° were measured. We find that there are the vortex glass phase and vortex liquid phase in the mixed state. The flux creep exists in the vortex glass phase, and it obviously appears in the area around the boundary between the vortex glass phase and the vortex liquid phase.  相似文献   

5.
(K0.5Na0.5)NbO3 (KNN) single crystals were grown using a high temperature flux method. The dielectric permittivity was measured as a function of temperature for [001]-oriented KNN single crystals. The ferroelectric phase transition temperatures, including the rhombohedral–orthorhombic TRO, orthorhombic–tetragonal TOT and tetragonal–cubic TC were found to be located at −149  C, 205 C and 393 C, respectively. The domain structure evolution with an increasing temperature in [001]-oriented KNN single crystal was observed using polarized light microscopy (PLM), where three distinguished changes of the domain structures were found to occur at −150  C, 213 C and 400 C, corresponding to the three phase transition temperatures.  相似文献   

6.
We examine spin dependent transport in a quantum interferometer composed of magnetic atomic sites based on transfer matrix formalism. The interferometer, threaded by a magnetic flux ϕ, is symmetrically attached to two semi-infinite one-dimensional (1D) non-magnetic electrodes, namely, source and drain. A simple tight-binding model is used to describe the bridge system, and, here we address numerically the conductance-energy and current-voltage characteristics as functions of the interferometer-to-electrode coupling strength, magnetic flux and the orientation of local the magnetic moments associated with each atomic site. Quite interestingly it is observed that, for ϕ = ϕ 0/2 (ϕ 0 = ch/e, the elementary flux-quantum) a logical XOR gate like response is observed, depending on the orientation of the local magnetic moments associated with the magnetic atoms in the upper and lower arms of the interferometer, and it can be changed by an externally applied gate magnetic field. This aspect may be utilized in designing a spin based electronic logic gate.  相似文献   

7.
We have successfully constructed and tested a superconductor-insulator-superconductor (SIS) receiver for operation at 265–280 GHz using 1 m2 area Nb–AlO x –Nb tunnel junctions fabricated at Stony Brook. The best performance to date is a double sideband (DSB) receiver noise temperature of 129 K at 278 GHz. We find that suppression of the Josephson pair currents with a magnetic field is essential for good performance and a stable DC bias point. Fields as high as 280 gauss have been used with no degradation of mixing performance. We illustrate the improvement in the intermediate frequency (IF) output stability with progressively increasing magnetic fields.  相似文献   

8.
In this research the efficiency of a millimeter-wave Schottky-varactor quadrupler was studied. Theoretical simulations were carried out by using a nonlinear analysis program to find the optimum embedding impedances for a given diode. Emphasis was placed on the study of optimum idlers at the 2nd and 3rd harmonics, which are essential for a high quadrupling efficiency. For experimental verification a quadrupler for 140–155 GHz output frequency range with fixed idler terminations was constructed. This quadrupler was tested with different output configurations. A 10% tunable bandwidth was obtained with output power in the range of 1.5–2.7 mW whenP in =40 mW. The highest efficiency measured was 11.3% at 148 GHz with 10 mW input power.  相似文献   

9.
A dynamic method for quantifying the amount and mechanism of trapping in organic field effect transistors (OFETs) is proposed. It exploits transfer characteristics acquired upon application of a triangular waveform gate sweep V G. The analysis of the transfer characteristics at the turning point V G=−V max between forward and backward gate sweeps, viz. around the maximum gate voltage V max applied, provides a differential slope Δm which depends exclusively on trapping. Upon a systematic change of V max it is possible to extract the initial threshold voltage, equivalent to one of the observables of conventional stress measurements, and assess the mechanism of trapping via the functional dependence on the current. The analysis of the differential logarithmic derivative at the turning point yields the parameters of trapping, as the exponent β and the time scale of trapping τ. In the case of an ultra-thin pentacene OFET we extract β=1 and τ=102–103 s, in agreement with an exponential distribution of traps. The analysis of the hysteresis parameter Δm is completely general and explores time scales much shorter than those involved in bias stress measurements, thus avoiding irreversible damage to the device.  相似文献   

10.
Charging and discharging phenomena from silicon nanocrystals have been studied by means of capacitance–voltage characteristics on P-type metal-oxide-semiconductor (P-MOS) capacitors with embedded self-assembled silicon quantum dots. The dots have a floating gate behavior as shown by the hysteresis onCV curves. The Si-dots are charged or discharged by direct tunneling of carriers through a 3 nm thick oxide. The nanocrystals could be charged by electrons or holes, depending on the charging bias conditions. The discharge is studied by constant bias method and shows a logarithmic variation with time. Retention times higher than several hours are observed. A simple model is developed in order to evaluate the electric field within the tunneling oxide layer. Then, complete simulations are done for the different discharge paths. The barrier heights are extracted from the discharge data and possible confinement effects are discussed. The results confirm the high potentiality of silicon nanocrystal-floating gates for memory applications.  相似文献   

11.
It was found that mono- and di-meso-phenyl substitution in octaethylporphyrins (OEP)and their chemical dimers with the phenyl ring as a spacer manifests itself in the dramatical shortening of T1 state lifetimes at 295 K (from 1.5 ms down to 2–5 s in degassed toluene solutions). On the other hand, this substitution does not influence spectral-kinetic parameters of S0 and S1 states. The enhancement of the T1 state non-radiative deactivation is explained by torsional librations of the phenyl ring around a single C-C bond in sterically encumbered OEP molecules leading to non-planar dynamic distorted conformations in the excited T1 states. For these compounds with electron-accepting NO2-groups in the meso-phenyl ring the strong non-radiative deactivation of S1 and T1 states (by 2–3 orders of magnitude) is observed upon the displacement of NO2-group from para-to ortho-position of the phenyl ring. The S1 state quenching is caused by the direct intramolecular electron transfer to low-lying CT state of the radical ion pair (the normal region, non-adiabatic case presumably, V = 130–190 cm–1 in dimethylformamide). The additional deactivation of the T1 state is connected with thermally activated transitions to upper-lying CT states as well as the strengthening of intersystem crossing probabilities.  相似文献   

12.
We fabricated point-contacted a-Si:H(p)/c-Si(n) heterojunction solar cells using patterned SiO2 and investigated their electrical properties using the light current–voltage (I–V) curve and Suns-Voc measurements. The light I–V curves showed bias-dependent changes according to the applied voltage in the point-contacted cells, especially in the samples with a long distance between the point-contacted junctions. The Suns-Voc measurements showed that the bias-dependence of the light I–V curves did not originate from the recombination in the SiO2/Si or a-Si:H(p)/c-Si(n) interface, but from the series resistances. It is possible to explain the bias-dependent light I–V curve in terms of the conductivity of a-Si:H(p) and difference in the electrical contact properties between a-Si:H(p), ZnO and c-Si(n). These results mean that the electrical properties of the a-Si:H(p) layer and the contact properties with this layer are also critical to obtain a high Jsc and fill factor in n-type based Si heterojunction solar cells.  相似文献   

13.
We present an experimental report on the recent observation of lasing at 26.1 and 30.4 nm on the 3p 1 S 0–3s 3 P 1 [termedG((0–1)] and 3p 1 S 0–3s 1 P 1 [termedE(0–1)] transitions in Ne-like V, in which the normally weakG(0–1) transition was observed to lase more strongly than theE(0–1) transition. The experiment was performed on the Asterix IV iodine laser with a prepulse 5.23 ns before the main pulse. At a target length of about 2.5 cm, it was found that, while theG(0–1) andE(0–1) lines have comparable intensities in V, theE(0–1) line dominates spectra from Mn, Cr, Ti and Sc, which have adjacent nuclear charges. It was also found that the two lasers in V also have different temporal histories and spatial distributions. This is in contrast to the LASNEX + XRASER simulation, which predicts virtually similar temporal and spatial behavior for the two transitions. On leave from: Shanghai Institute of Optics and Fine Mechanics, P.O. Box 800211, Shanghai, People's Republic of China  相似文献   

14.
In this short contribution we present a commentary on the interpretation of our thermal activation data obtained in the quantum regime of a SQUID, as discussed in part I [Bol et al., Physica B 133 (1985) 196]. Under certain circumstances a superconducting ring containing a weak superconducting junction, a SQUID, has two metastable magnetic flux states separated by a potential energy barrier ΔV. In this metabistable system stochastic magnetic flux transitions were observed due to intrinsic thermal activation. It was found that the transition rate was strongly reduced compared with the predictions of the classical thermal activation theory of Kramers or with the modern thermal activation theory of Grabert and Weiss which is an extension to the quantum regime where kT ω00 being the free oscillation frequency corresponding to the metastable potential well). In these theories the transition rate is proportional to exp(-ΔV/kT), in which V is treated as a temperature independence potential just as in the case in microscopic activated processes. In fact, however, from the thermodynamic point of view the relevant quantity in the exponent is the magnetic availability of the system with respect to the surroundings fixed by the temperature of the heat bath and the external magnetic field. Only when the system is completely isothermal can the potential V be identified with the Gibbs function. But in general when a flux transition takes place between the metastable potential wells, some energy will be dissipated possibly causing a temporary temperature rise due to self-heating. In principle, therefore, the system behaves neither perfectly isothermal nor adiabatic.  相似文献   

15.
The capacitance characteristics of platinum nanoparticle (NP)-embedded metal–oxide–semiconductor (MOS) capacitors with gate Al2O3 layers are studied in this work. The capacitance versus voltage (CV) curves obtained for a representative MOS capacitor exhibit flat-band voltage shifts, demonstrating the presence of charge storages in the platinum NPs. The counterclockwise hysteresis and flat-band voltage shift, observed from the CV curves imply that electrons are stored in a floating gate layer consisting of the platinum NPs present between the tunneling and control oxide layers in the MOS capacitor and that these stored electrons originate from the Si substrate. Moreover, the charge remains versus time curve for the platinum NP-embedded MOS capacitor is investigated in this work.  相似文献   

16.
Magnetic transitions and magnetotransport properties of polycrystalline Tb1−xGdxMn6Ge6 (x=0.2–1.0) compounds have been investigated by magnetic property and resistivity measurements in an applied magnetic field up to 50 kOe. The cell parameter a,c and cell volume V of compounds (x=0.2–1.0) increase with an increasing Gd content. The compounds (x=0.2–1.0) show a rich variety of magnetic behavior, such as antiferromagnetic, ferrimagnetic and paramagnetic state with increasing temperature. Their Curie temperatures increase almost linearly with an increasing Gd content from 460 K for x=0.2 to 484 K for x=1.0. The compounds (x=0.2–1.0) display the field induced metamagnetic transitions, and the threshold fields first increase and then decrease with an increasing Gd content. The magnetoresistance curves of the Tb0.4Gd0.6Mn6Ge6 compounds in an applied magnetic field up to 50 kOe are presented and the magnetoresistance effects are related to the metamagnetic transitions.  相似文献   

17.
The nature of dissipative flux motion in epitaxial YBa2Cu3O7– thin films has been investigated by means of resistivity (T, B) and transport current-voltage characteristicsE(j, T, B) covering up to 5 orders of magnitude in voltage for a wide range of temperatures (4.2–85 K) and magnetic fields (0.5–7.0 T). Activation energiesU(T, B, j) have been determined in the framework of the collective flux creep theory. It is shown thatU(T, B, j) decreases with increasing temperature, magnetic field and current density. In order to study the influence of a well-defined defect structure, columnar defects have been generated by irradiation with 340 MeV Xe-ions. From a scaling law relating theI–V curves after irradiation with the curves before irradiation it is found that vortices pinned by the columnar defects do not contribute to dissipation. Due to irradiation the irreversibility line is shifted to higher magnetic fields, indicating its connection to the pinning mechanisms present in the samples.  相似文献   

18.
张倩  巫翔  秦善 《中国物理 B》2011,20(6):66101-066101
In situ high-pressure experiments of Co2P are carried out by means of angle dispersive X-ray diffraction with diamond anvil cell technique. No phase transition is observed in the present pressure range up to 15 GPa at room temperature, even at high temperature and 15 GPa. Results of compression for Co2P are well presented by the second-order Birch-Murnaghan equation of state with V0 = 130.99(2)3 (1=0.1 nm) and K0 = 160(3) GPa. Axial compressibilities are described by compressional modulus of the axis: Ka = 123(2) GPa, Kb = 167(8) GPa and Kc = 220(7) GPa. Theoretical calculations further support the experimental results and indicate that C23-type Co2P is stable at high pressure compared with the C22-type phase.  相似文献   

19.
The temperature-dependent magnetization, lattice, and transport properties of Mn3Sn1−xGexC (0≤x≤0.5) compounds are systematically investigated. The Mn–Mn atomic distance decreases as Ge content is increased, and the transition temperature from ferromagnetic (or ferrimagnetic) to paramagnetic state decreases too. Mn3SnC has a large magnetovolume effect (MVE). However, Ge-doping in Mn3SnC gradually reduces the MVE, till the MVE disappears. Whether there is an abnormal lattice change or not, there always exists an anomalous increase in resistivity near the magnetic phase transition point with decreasing temperature.  相似文献   

20.
We have investigated the effects of electron density discontinuity on the transports of edge currents of two-dimensional electron gas (2DEG). The electric field applied to a gate, which covers the 2DEG partially, gives rise to change in the carrier density and results in a density gradient, which deforms the edge currents. The transverse and longitudinal resistances were measured as functions of gate voltage VG in the quantum Hall regime. The deviations of the longitudinal resistances from the normal quantum Hall resistances are attributed to the reflections of the edge currents under the influence of the abrupt density discontinuity. A switching behavior of the transverse resistance by controlling the gate voltage was observed when VG=−2.2 and −2.0 V for magnetic field H=5 and 7.2 T, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号