首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mass spectrometric method based on the combined use of electrospray ionization, collision-induced dissociation and tandem mass spectrometry has been applied to the structural characterization of the flavone triglycoside, robinin (3,5,7,4'-tetrahydroxyflavone-3-O-robinoside-7-O-rhamnoside). The deprotonated molecule fragments by loss of the rhamnose glycan residue to yield the Y(7) (-) ion (m/z 593) and by scission of the robinose glycan residue to yield the radical anion [Y(3,0)-H](-.) (m/z 430). The Y(7) (-) ion fragments by scission of the robinose glycan residue to yield the radical anion of Y(7)[Y(3,0)-H](-.) (m/z 284). The [Y(3,0)-H](-.) radical anion fragments by loss of the rhamnose glycan residue to yield the radical anion Y(7)[Y(3,0)-H](-.) (m/z 284) and by scission to yield [Y(7)-H][Y(3,0)--H](-) (m/z 283). A fragmentation mechanism has been proposed.  相似文献   

2.
The geometries, stabilities, and electronic and magnetic properties of Y(n)Al (n=1-14) clusters have been systematically investigated by using density functional theory with generalized gradient approximation. The growth pattern for different sized Y(n)Al (n=1-14) clusters is Al-substituted Y(n+1) clusters and it keeps the similar frameworks of the most stable Y(n+1) clusters except for Y(9)Al cluster. The Al atom substituted the surface atom of the Y(n+1) clusters for n<9. Starting from n=9, the Al atom completely falls into the center of the Y-frame. The Al atom substituted the center atom of the Y(n+1) clusters to form the Al-encapsulated Y(n) geometries for n>9. The calculated results manifest that doping of the Al atom contributes to strengthen the stabilities of the yttrium framework. In addition, the relative stability of Y(12)Al is the strongest among all different sized Y(n)Al clusters, which might stem from its highly symmetric geometry. Mulliken population analysis shows that the charges always transfer from Y atoms to Al atom in all different sized clusters. Doping of the Al atom decreases the average magnetic moments of most Y(n) clusters. Especially, the magnetic moment is completely quenched after doping Al in the Y(13), which is ascribed to the disappearance of the ininerant 4d electron spin exchange effect. Finally, the frontier orbitals properties of Y(n)Al are also discussed.  相似文献   

3.
The Escherichia coli ribonucleotide reductase (RNR), composed of two subunits (R1 and R2), catalyzes the conversion of nucleotides to deoxynucleotides. Substrate reduction requires that a tyrosyl radical (Y(122)*) in R2 generate a transient cysteinyl radical (C(439)*) in R1 through a pathway thought to involve amino acid radical intermediates [Y(122)* --> W(48) --> Y(356) within R2 to Y(731) --> Y(730) --> C(439) within R1]. To study this radical propagation process, we have synthesized R2 semisynthetically using intein technology and replaced Y(356) with a variety of fluorinated tyrosine analogues (2,3-F(2)Y, 3,5-F(2)Y, 2,3,5-F(3)Y, 2,3,6-F(3)Y, and F(4)Y) that have been described and characterized in the accompanying paper. These fluorinated tyrosine derivatives have potentials that vary from -50 to +270 mV relative to tyrosine over the accessible pH range for RNR and pK(a)s that range from 5.6 to 7.8. The pH rate profiles of deoxynucleotide production by these F(n)()Y(356)-R2s are reported. The results suggest that the rate-determining step can be changed from a physical step to the radical propagation step by altering the reduction potential of Y(356)* using these analogues. As the difference in potential of the F(n)()Y* relative to Y* becomes >80 mV, the activity of RNR becomes inhibited, and by 200 mV, RNR activity is no longer detectable. These studies support the model that Y(356) is a redox-active amino acid on the radical-propagation pathway. On the basis of our previous studies with 3-NO(2)Y(356)-R2, we assume that 2,3,5-F(3)Y(356), 2,3,6-F(3)Y(356), and F(4)Y(356)-R2s are all deprotonated at pH > 7.5. We show that they all efficiently initiate nucleotide reduction. If this assumption is correct, then a hydrogen-bonding pathway between W(48) and Y(356) of R2 and Y(731) of R1 does not play a central role in triggering radical initiation nor is hydrogen-atom transfer between these residues obligatory for radical propagation.  相似文献   

4.
The first-order rate constants (k(Y)) at several temperatures in CDCl(3) were measured for thermal decompositions of YC(6)H(4)CH(2)CO(3)C(CH(3))(3) with Y being p-OCH(3), p-OPh, p-CH(3), p-Ph, p-H, p-Cl, m-Cl, and p-NO(2). The relative rates (k(Y)/k(H)) exhibit excellent rho(+)/sigma(+) Hammett correlations with rho(+) < 0, indicating a polar TS. Activation parameters (DeltaH()(Y) and DeltaS()(Y)) and their differential terms (DeltaDeltaH()(Y)(-)(H) and DeltaDeltaS()(Y)(-)(H)) were obtained from the Eyring plot. Differential activation terms (DeltaDeltaH()(Y)(-)(H) and DeltaDeltaS()(Y)(-)(H)) disclose an isokinetic relation with p-CH(3), p-Ph, p-H, p-Cl, and m-Cl (isokinetic temp, 230 K). However, p-OCH(3), and p-OPh show negative deviations, and a positive deviation occurs with p-NO(2). Plot of DeltaDeltaH()(Y)(-)(H) vs sigma(+) exhibits a good linear relation (r = 0.95) with a slope (alpha(1) = -3.34). A better linear correlation (r = 0.97) and steeper slope (alpha(2) = -5.22) were observed for TDeltaDeltaS()(Y)(-)(H) vs sigma(+). Negatively larger slope (alpha(2) = -5.22) may point to entropy control of rates. Differential activation parameters (DeltaDeltaH()(Y)(-)(H) and DeltaDeltaS()(Y)(-)(H)) reflect variations of activation process. Differential activation entropies (DeltaDeltaS()(Y)(-)(H)) are discussed in terms of contributions of translational and rotational entropies. Similar deviation behaviors of p-OCH(3), p-OPh, and p-NO(2) were again observed for the both plots. p-NO(2) can strongly destabilize the cationic site of the polar TS but serves an eminent spin delocalizer for the homolytic TS.  相似文献   

5.
分子筛作为催化剂或催化剂的载体材料广泛应用于各种催化反应过程中,将杂原子引人分子筛骨架中形成杂原子分子筛,可在较大的范围内调节分子筛表面的酸性中心和氧化还原催化活性中心.  相似文献   

6.
7.
We report an ab initio study of the identity carbon-to-carbon proton-transfer NCCH(2)Y + NCCH=Y(-) right arrow over left arrow NCCH=Y(-) + NCCH(2)Y in the gas phase, where Y = H, CH=CH(2), CH=O, CH=S, CN, NO, and NO(2). The main focus is on a comparison with the previously reported systems CH(3)Y + CH(2)=Y(-) right arrow over left arrow CH(2)=Y(-) + CH(3)Y, i.e., on the effect of the cyano group on acidities, proton-transfer barriers, and transition state structures. The conclusions of this study are as follows: (1) The transition state for the NCCH(2)Y/NCCH=Y(-) systems is more imbalanced than that for the CH(3)Y/CH(2)=Y(-) systems. (2) The cyano group leads to an increase in the acidities but to a decrease in the proton transfer barriers. This barrier reduction results from the fact that the stabilizing effect of the cyano group on the transition state is greater than that on the anion. (3) Within a reaction series, the barriers are largely dominated by the pi-acceptor strength of Y, i.e., the strongest pi-acceptors lead to the highest barriers. This is similar to proton transfers in solution but quite different from the CH(3)Y/CH(2)=Y(-) systems in the gas phase; in these latter systems pi-acceptor effects play a minor role while the barrier lowering field effect of Y is dominant.  相似文献   

8.
The oxidation of a redox-active tyrosine residue Y(Z) in photosystem II (PSII) is coupled with proton transfer to a hydrogen-bonded D1-His190 residue. Because of the apparent proximity of Y(Z) to the water-oxidizing complex and its redox activity, it is believed that Y(Z) plays a significant role in water oxidation in PSII. We investigated the g-anisotropy of the tyrosine radical Y(Z)(?) to provide insight into the mechanism of Y(Z)(?) proton-coupled electron transfer in Mn-depleted PSII. The anisotropy was highly resolved by electron paramagnetic resonance spectroscopy at the W-band (94.9 GHz) using PSII single crystals. The g(X)-component along the phenolic C-O bond of Y(Z)(?) was calculated by density functional theory (DFT). It was concluded from the highly resolved g-anisotropy that Y(Z) loses a phenol proton to D1-His190 upon tyrosine oxidation, and D1-His190 redonates the same proton back to Y(Z)(?) upon reduction.  相似文献   

9.
Luo  Zhenghui  Sun  Rui  Zhong  Cheng  Liu  Tao  Zhang  Guangye  Zou  Yang  Jiao  Xuechen  Min  Jie  Yang  Chuluo 《中国科学:化学(英文版)》2020,63(3):361-369
The emergence of the latest generation of small-molecule acceptor(SMA) materials,with Y6 as a typical example,accounts for the surge in device performance for organic solar cells(OSCs).This study proposes two new acceptors named Y6-C2 and Y6-C3,from judicious alteration of alkyl-chains branching positions away from the Y6 backbone.Compared to the Y6,the Y6-C2 exhibits similar optical and electrochemical properties,but better molecular packing and enhanced crystallinity.In contrast,the Y6-C3 shows a significant blue-shift absorption in the solid state relative to the Y6 and Y6-C2.The as-cast PM6:Y6-C2-based OSC yields a higher power conversion efficiency(PCE) of 15.89% than those based on the Y6(15.24%) and Y6-C3(13.76%),representing the highest known value for as-cast nonfullerene OSCs.Prominently,the Y6-C2 displays a good compatibility with the PC_(71)BM.Therefore,a ternary OSC device based on PM6:Y6-C2:PC_(71)BM(1.0:1.0:0.2) was produced,and it exhibits an outstanding PCE of 17.06% and an impressive fill factor(FF) of 0.772.Our results improve understanding of the structureproperty relationship for state-of-the-art SMAs and demonstrate that modulating the structure of SMAs via fine-tuning of alkylchains branching positions is an effective method to enhance their performance.  相似文献   

10.
Reaction of isocyanates XNCO (X = Ar, i-Pr, t-Bu) with CH(2)(Y)CO(2)CH(2)CCl(3) (Y = CO(2)Me, CO(2)CH(2)CCl(3), CN) gave 15 amides XNHCOCH(Y)CO(2)CH(2)CCl(3) (6) or enols of amides XNHC(OH)=C(Y)CO(2)CH(2)CCl(3) (5) systems. The amide/enol ratios in solution depend strongly on the substituent Y and the solvent and mildly on the substituent X. The percentage of enol for group Y increases according to Y = CN > CO(2)CH(2)CCl(3) > CO(2)Me and decreases with the solvent according to CCl(4) > C(6)D(6) > CDCl(3) > THF-d(8) > CD(3)CN > DMSO-d(6). With the most acidic systems (Y = CN) amide/enol exchange is observed in moderately polar solvents and ionization to the conjugate base is observed in DMSO-d(6). The solid-state structure of the compound with Y = CN, X = i-Pr was found to be that of the enol. The reasons for the stability of the enols were discussed in terms of polar and resonance effects. Intramolecular hydrogen bonds result in a very low delta(OH) and contribute to the stability of the enols and are responsible for the higher percentage of the E-isomers when Y = CO(2)Me and the Z-isomers when Y = CN. The differences in delta(OH), delta(NH), K(enol), and E/Z enol ratios from the analogues with CF(3) instead of CCl(3) are discussed.  相似文献   

11.
Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides using a diferric tyrosyl radical (Y(122)(?)) cofactor in β2 to initiate catalysis in α2. Each turnover requires reversible long-range proton-coupled electron transfer (PCET) over 35 ? between the two subunits by a specific pathway (Y(122)(?) ? [W(48)?] ? Y(356) within β to Y(731) ? Y(730) ? C(439) within α). Previously, we reported that a β2 mutant with 3-nitrotyrosyl radical (NO(2)Y(?); 1.2 radicals/β2) in place of Y(122)(?) in the presence of α2, CDP, and ATP catalyzes formation of 0.6 equiv of dCDP and accumulates 0.6 equiv of a new Y(?) proposed to be located on Y(356) in β2. We now report three independent methods that establish that Y(356) is the predominant location (85-90%) of the radical, with the remaining 10-15% delocalized onto Y(731) and Y(730) in α2. Pulsed electron-electron double-resonance spectroscopy on samples prepared by rapid freeze quench (RFQ) methods identified three distances: 30 ± 0.4 ? (88% ± 3%) and 33 ± 0.4 and 38 ± 0.5 ? (12% ± 3%) indicative of NO(2)Y(122)(?)-Y(356)(?), NO(2)Y(122)(?)-NO(2)Y(122)(?), and NO(2)Y(122)(?)-Y(731(730))(?), respectively. Radical distribution in α2 was supported by RFQ electron paramagnetic resonance (EPR) studies using Y(731)(3,5-F(2)Y) or Y(730)(3,5-F(2)Y)-α2, which revealed F(2)Y(?), studies using globally incorporated [β-(2)H(2)]Y-α2, and analysis using parameters obtained from 140 GHz EPR spectroscopy. The amount of Y(?) delocalized in α2 from these two studies varied from 6% to 15%. The studies together give the first insight into the relative redox potentials of the three transient Y(?) radicals in the PCET pathway and their conformations.  相似文献   

12.
Escherichia coli ribonucleotide reductase is an α2β2 complex and catalyzes the conversion of nucleoside 5'-diphosphates (NDPs) to 2'-deoxynucleotides (dNDPs). The reaction is initiated by the transient oxidation of an active-site cysteine (C(439)) in α2 by a stable diferric tyrosyl radical (Y(122)?) cofactor in β2. This oxidation occurs by a mechanism of long-range proton-coupled electron transfer (PCET) over 35 ? through a specific pathway of residues: Y(122)?→ W(48)→ Y(356) in β2 to Y(731)→ Y(730)→ C(439) in α2. To study the details of this process, 3-aminotyrosine (NH(2)Y) has been site-specifically incorporated in place of Y(356) of β. The resulting protein, Y(356)NH(2)Y-β2, and the previously generated proteins Y(731)NH(2)Y-α2 and Y(730)NH(2)Y-α2 (NH(2)Y-RNRs) are shown to catalyze dNDP production in the presence of the second subunit, substrate (S), and allosteric effector (E) with turnover numbers of 0.2-0.7 s(-1). Evidence acquired by three different methods indicates that the catalytic activity is inherent to NH(2)Y-RNRs and not the result of copurifying wt enzyme. The kinetics of formation of 3-aminotyrosyl radical (NH(2)Y?) at position 356, 731, and 730 have been measured with all S/E pairs. In all cases, NH(2)Y? formation is biphasic (k(fast) of 9-46 s(-1) and k(slow) of 1.5-5.0 s(-1)) and kinetically competent to be an intermediate in nucleotide reduction. The slow phase is proposed to report on the conformational gating of NH(2)Y? formation, while the k(cat) of ~0.5 s(-1) is proposed to be associated with rate-limiting oxidation by NH(2)Y? of the subsequent amino acid on the pathway during forward PCET. The X-ray crystal structures of Y(730)NH(2)Y-α2 and Y(731)NH(2)Y-α2 have been solved and indicate minimal structural changes relative to wt-α2. From the data, a kinetic model for PCET along the radical propagation pathway is proposed.  相似文献   

13.
The nanoscale parameters of metal clusters and lattices have a crucial influence on the macroscopic properties of materials. Herein, we provide a detailed study on the size and shape of isolated yttrium carbide clusters in different fullerene cages. A family of diyttrium endohedral metallofullerenes with the general formula of Y(2)C(2n) (n = 40-59) are reported. The high field (13)C nuclear magnetic resonance (NMR) and density functional theory (DFT) methods are employed to examine this yttrium carbide cluster in certain family members, Y(2)C(2)@D(5)(450)-C(100), Y(2)C(2)@D(3)(85)-C(92), Y(2)C(2)@C(84), Y(2)C(2)@C(3v)(8)-C(82), and Y(2)C(2)@C(s)(6)-C(82). The results of this study suggest that decreasing the size of a fullerene cage with the same (Y(2)C(2))(4+) cluster results in nanoscale fullerene compression (NFC) from a nearly linear stretched geometry to a constrained "butterfly" structure. The (13)C NMR chemical shift and scalar (1)J(YC) coupling parameters provide a very sensitive measure of this NFC effect for the (Y(2)C(2))(4+) cluster. The crystal structural parameters of a previously reported metal carbide, Y(2)C(3) are directly compared to the (Y(2)C(2))(4+) cluster in the current metallofullerene study.  相似文献   

14.
Complete donor-induced alkylaluminate cleavage of halfmetallocene complex Cp*Y(AlMe4)2, that is, treatment of Cp*Y(AlMe4)2 with 2 equiv of diethyl ether, produces [Cp*Y(mu2-Me)2]3 in high yield (95%). In contrast, the equimolar reaction of Cp*Y(AlMe4)2 with diethyl ether reproducibly formed complex [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] in low yield (10-30%) via a multiple C-H bond activation. The synthesis of the heterooctametallic yttrium-aluminum-methine cluster was also accomplished in moderate yield (47%) by the equimolar reaction of discrete Cp*Y(AlMe4)2 and [Cp*Y(mu2-Me)2]3 in the absence of any donor solvent and "free" AlMe3. This gives strong evidence that preformed heterometal-bridged Y-CH3-Al moieties are prone to multiple hydrogen abstraction in the presence of a highly basic reagent such as [Cp*Y(mu2-Me)2]3. The monocylopentadienyl complexes [Cp*Y(mu2-Me)2]3 and [Cp*4Y4(mu2-CH3)2{(CH3)Al(mu2-CH3)2}4(mu4-CH)2] were structurally characterized.  相似文献   

15.
Hydrolysis products of organotin compounds RC(6)H(4)OCH(2)COOSn(CH(2)ph)(3) (R = o-NO(2), 1; m-NO(2), 2; p-NO(2), 3; o-CH(3), 4; o-OCH(3), 5; o-Cl, 6; o-Br, 7) and RC(6)H(3)OCH(2)COOSn(CH(2)ph)(3) (R = o,o-2CH(3), 8, o-OCH(3), p-CHO, 9; o,p-2Cl, 10), produced in aqueous acetonitrile solution, have been investigated by electrospray mass spectrometry (MS) and MS(n) techniques. The complexes [Y(2)SnXR'](-), [Y(3)SnXR'](-), [Y(3)SnX(2)R'](-), [Y(2)SnX(3)R'](-), and fragment ions of [Y(3)SnR'](-), plus abundant RC(6)H(4)(or RC(6)H(3))OCH(2)COO(-) and RC(6)H(4)(or RC(6)H(3))O(-) ions are observed in negative mode, whereas the protonated molecular ion [M + H](+), complexes [Y(2)SnXR'](+), [Y(3)SnXR'](+), [Y(2)SnX(2)R'](+), [Y(3)SnX(2)R'](+), [Y(2)SnX(3)R'](+), [Y(3)SnX(3)R'](+), as well as [YSnXR'](+), [M - CH(2)ph](+), XSn(+), (phCH(2))(3)Sn(+), phCH(2)Sn(+) (Y = &bond;CH(2)ph, X = &bond;OOCCH(2)OC(6)H(4)R(or C(6)H(3)R)) are detected in the positive mode. Water adduct ions are seen in both modes. The assignments are facilitated by agreement between observed and calculated isotopic patterns and tandem mass spectrometry studies.  相似文献   

16.
Rate constants (k(Y)) of the isomerizations of 11 diphenyl N-(substituted benzyl) ketenimines were measured at 40, 50, 60, and 70 degrees C. Activation parameters DeltaH()(Y) and DeltaS()(Y) were obtained using the Eyring equation. The relative rates (k(Y)/k(H)) were fitted into Hammett single correlations (log k(Y)/k(H) = rhosigma and log k(Y)/k(H) = rho(*)sigma(*)). The single correlations have been compared with Hammett dual correlations (log k(Y)/k(H) = rhosigma + rho(*)sigma(*) ). Separate treatments of para and meta substituents yielded even better correlations. Para substituents control the rates through spin-delocalizations and inductive effects. The former outweighs the latter when the latter exerts a modest but distinct influence on the rates. On the other hand, inductive effects are the "major" or the sole interactions triggered by meta substituents.  相似文献   

17.
间、对-甲基异丙苯是生产间、对-苯酚的反应中间体,因此其制备受到国内外广泛关注.ZSM-5,Y型,betn等沸石分子筛和掺杂zn的Al-MCM-41介孔分子筛在此反应中表现出不同的择形性.近年来利用沸石分子筛前驱体自组装技术合成的新型介孔材料已显示出优异的催化性能,  相似文献   

18.
Lutz GJ  Lafleur PD 《Talanta》1969,16(11):1457-1460
The determination of yttrium in the presence of large amounts of the rare earths by the thermal neutron reaction (89)Y(n, gamma)(90)Y is complicated because of frequent problems of sample self-shielding from major constituents of the sample, and the difficulty of separating (90)Y, a pure beta-emitter, from other elements which are very similar chemically. A non-destructive photon activation analysis method has been developed for this determination. Bremsstrahlung from a 35-muA beam of 35-MeV electrons induces the photonuclear reaction (89)Y(gamma, n)(88)Y. Optimum sensitivity is obtained by coincidence counting of the 0.90 and 1.84 MeV gamma-rays associated with the decay of (88)Y. The detection limit is less than 1 mug of yttrium.  相似文献   

19.
Based on bonding parameters such as Yang's Electronegative Force Gauge Y(i), electronic number of valence layer Z(i), number of combined hydrogen atoms h(i), number of bonding electron b(i), and quantum number such as the highest main quantum number of valence layer n(i), a novel atomic valence delta(i) (Y) is defined and a novel topological index (1)chi(Y) is derived from the atomic valence. The atomic valence is defined as delta(i) (Y) = (Z(i) - h(i))b(i)/n(i) (2)Y(i), while the topological index is expressed as (1)chi(Y) summation operator (i,j=1) (m) (delta(i) (Y)delta(j) (Y))(-1/2). Subsequently, the index (1)chi(Y) is utilized to study the structure-property relationships of complex organic compounds. The results of correlativity showed that the index is highly and extensively correlated with such properties as solubility of phenyl chlorides, gas chromatographic retention index of alkoxyl silanes, and toxicity of heterocyclic nitrogen-containing compounds. Moreover, predicted values are quite consistent with experimental ones when the index is employed to predict the partition coefficient (log P) of fatty alcohols, phenyl chlorides, and barbitals. Compared to the topological indices reported in the literature, the universality and reliability of (1)chi(Y) to the properties of complex organic compounds have been distinctively improved, and its calculating process is simple and convenient.  相似文献   

20.
田宪儒 《有机化学》1993,13(2):189-191
用3-苄基-4-苯基斯德酮和4-甲酰基-3-芳基斯德酮的硝化研究了在斯德酮环4-取代的去定域化效应和斯德酮环的电子效应的二重性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号