首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Complexing agents are often used to improve the quality of electrodeposited alloys. Influence of different complexing agents with hydroxycarboxylic acid group on the electrodeposited Co-Pt-W thin films has been investigated. Cathodic polarization curves show that the polarization behaviors of electroplating bath with different complexing agents are very different. Surface morphology, phase composition and magnetic properties are observed by means of FESEM, XRD and vibrating sample magnetometer (VSM), respectively. It has been found out that, if citrate was used as complexing agent, the Co-Pt-W thin films were homogeneous and the granular crystals with the average grain size of 2 μm have been observed. Co-Pt-W thin films exhibited hexagonal close packed (hcp) lattice and strong perpendicular anisotropic magnetic behavior (Hc⊥ = 215.5 kA/m; Hc∥ = 55.4 kA/m). In the presence of gluconate, needle-like deposits were obtained and a strong face centered cubic (fcc(1 1 1)) texture was measured. The Co-Pt-W thin films showed isotropic magnetic behavior. In the case of tartate and malate, the coexistence of needle-like deposits and cellular deposits appeared. The XRD patterns showed that the mixed fcc and hcp phase formed. Perpendicular anisotropic magnetic behaviors of thin films, from malate or tartate baths, were not obvious.  相似文献   

2.
MnxGe1−x thin films were prepared by magnetron sputtering with a substrate temperature of 673 K and subsequently annealed at 873 K. The X-ray diffraction (XRD) measurements showed that all samples had a single Ge cubic structure. No films showed clear magnetic domain structure under a magnetic force microscope (MFM). Atom force microscope (AFM) measurements showed that the films had an uniform particle size distribution, and a columnar growth pattern. X-ray photoelectron spectroscopy (XPS) measurements indicated that the valences of both Mn and Ge atoms increase with the Mn concentration. The resistance decreased with increasing temperature, suggesting that the films were typical semiconductors. Magnetic measurements carried out using a Physical Property Measurement System (PPMS) showed that all samples exhibited ferromagnetism at room temperature. There was a small concentration of Mn11Ge8 in the films, but the ferromagnetism was mainly induced by Mn substitution for Ge site.  相似文献   

3.
Sn-Fe thin films were electrodeposited by constant current deposition on copper substrates using an aqueous gluconate based electrolyte with varying concentrations of the organic additive peptone. Good quality metallic deposits were obtained with surface morphologies which varied with the concentration of peptone present in the electrolyte. The effect of peptone concentration on the deposition process was studied using electrochemical polarization curves and EDX analysis. The effect of peptone concentration on deposit structure and surface morphology was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and 57Fe and 119Sn conversion electron Mössbauer spectroscopy (CEMS). It was concluded that the addition of small amounts of peptone to the electrolyte slightly increased the bath stability and led to changes in the alloy composition of the electrodeposits. It was found that increases in the peptone content increased the amount of the crystalline structure in the deposits with corresponding reductions in the amounts of amorphous structure present in the deposits.  相似文献   

4.
Ni/diamond composite coatings have been synthesized by ultrasonic-assisted electrodeposition in a Ni electroplating bath containing diamond nanoparticles. The influences of current density and ultrasonic agitation on the coating composition, morphology, topography, phase structure, and electrochemical characteristics of the electrodeposits were evaluated. Ultrasonic agitation was provided using an external ultrasonic bath at a frequency of 40 kHz and acoustic power of 300 W. Coating samples were also prepared under magnetic stirring for comparison with the ultrasonic-assisted deposits. This work reveals that the diamonds have been incorporated and evenly distributed in the composites. The coatings exhibit dense, granular like morphology with pyramid-like grains. As current density increases, the diamond amount of ultrasonic-assisted electrodeposits first increased to maximum of 11.4 wt% at 3 A dm−2 and then decreases to 9.9 wt% at 5 A dm−2, and the RTC of the preferred orientation (2 0 0) plane increases from 76.3% up to 93.4%. The crystallite size was 60–80 nm and the Ra of the magnetic and ultrasonic agitations were 116 nm, 110 nm, respectively. The maximum Rp of 39.9, 50.3 kΩ cm2 was obtained at 4 A dm−2 when respectively immersed 30 min and 7 days, illustrating the best corrosion resistance of the coatings of 4 A dm−2. The effects of mechanical and ultrasonic agitations on the mechanism of the co-electrodeposition process were both proposed. The incorporation of diamond particles enhances the hardness and wear-resisting property of the electrodeposits. The ultrasonic-assisted electrodeposited Ni/diamond coating has better corrosion resistance than that prepared under mechanical stirring conditions.  相似文献   

5.
CoNiFe alloy thin films deposited at various cobalt concentrations were galvanostatically electrodeposited on the pre-cleaned copper substrates. The effects of cobalt concentration on the structural, compositional, morphological, and magnetic properties of the films were investigated. X-ray diffraction patterns revealed that the deposited films possess polycrystalline in nature with mixed (fcc–bcc) cubic structure at optimized cobalt concentration. Microstructural properties of the films were calculated from predominant diffraction lines. The surface morphology and surface roughness were characterized using scanning electron microscopy and atomic force microscopy, respectively. EDAX results were revealed that the cobalt content increases as nickel content decreases whereas ferrous content initially increases and then eventually decreases in the CoNiFe alloy. VSM results show a higher value of saturation magnetization (4πM s) above 2 T with coercivity 154 A/m for films deposited in the optimized deposition condition.  相似文献   

6.
Sn1?xMnxO2 (x  0.11) thin films were fabricated by sol–gel and spin-coated method on Si (1 1 1) substrate. X-ray diffraction revealed that single-phase rutile polycrystalline structure was obtained for x up to about 0.078. Evolution of the lattice parameters and X-ray photoelectron spectroscopy studies confirmed the incorporation of Mn3+ cations into rutile SnO2 lattice. Optical transmission studies show that the band gap energy (Eg) broadens with the increasing of Mn content. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism (RTFM), which is identified as an intrinsic characteristic. Interestingly, the magnetic moment per Mn atom decreases with the increasing Mn content. The origin of RTFM can be interpreted in terms of the bound magnetic polaron model.  相似文献   

7.
FeCoP nanocrystalline films were successfully electrodeposited on the Cu film coated silicon substrate in the bath containing Fe2+, Co2+, as well as different concentration H2PO? ions ranging from 0.001 mol/L to 0.01 mol/L. And then the samples experienced magnetic heat treatment with different heating rates. Effects of H2PO? concentration and magnetic heat treatment on morphological, structural, and magnetic properties of the films were investigated by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer, and vector network analyzer. The results suggest that the as-deposited films do not exhibit obvious in-plane uniaxial magnetic anisotropy, and interestingly after magnetic heat treatment at heating rate of 6?°C/min, the FeCoP films will possess better in-plane uniaxial magnetic anisotropy. It has been obtained that morphology and grain size play important roles in determining magnetic properties. The magnetic performance of FeCoP films with different phosphorus content can be improved by appropriate magnetic heat treatment.  相似文献   

8.
Structural and magnetic properties of CoCu films electrodeposited on polycrystalline Cu substrates were investigated as a function of cathode potential used for their deposition. The compositional analysis, performed by energy dispersive X-ray spectroscopy, demonstrated that an increase in the deposition potential results in an increase in Co content of CoCu films. The crystal structure of the films was studied using the X-ray diffraction (XRD) technique. It was observed that they have a face centred cubic (fcc) structure, but also contain partly hexagonal close-packed phase. XRD results revealed that the (1 1 1) peak of fcc structure splits into two as Co (1 1 1) and Cu (1 1 1) peaks and the peak intensities change depending on the deposition potential and hence the film composition. The magnetic measurements were carried out at room temperature using a vibrating sample magnetometer. The magnetic findings indicated that coercivity decreases and saturation magnetisation increases with the increase of Co:Cu ratio caused by the deposition potential and also all films have planar magnetisation.  相似文献   

9.
We report structural, magnetic and electronic structure study of Mn doped TiO2 thin films grown using pulsed laser deposition method. The films were characterized using X-ray diffraction (XRD), dc magnetization, X-ray magnetic circular dichroism (XMCD) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements. XRD results indicate that films exhibit single phase nature with rutile structure and exclude the secondary phase related to Mn metal cluster or any oxide phase of Mn. Magnetization studies reveal that both the films (3% and 5% Mn doped TiO2) exhibit room temperature ferromagnetism and saturation magnetization increases with increase in concentration of Mn doping. The spectral features of XMCD at Mn L3,2 edge show that Mn2+ ions contribute to the ferromagnetism. NEXAFS spectra measured at O K edge show a strong hybridization between Mn, Ti 3d and O 2p orbitals. NEXAFS spectra measured at Mn and Ti L3,2 edge show that Mn exist in +2 valence state, whereas, Ti is in +4 state in Mn doped TiO2 films.  相似文献   

10.
CdSe thin films have been electrodeposited potentiostatically onto stainless-steel and fluorine-doped tin oxide-coated glass substrates from an aqueous acidic bath using cadmium acetate ((CH3COO)2Cd·2H2O) as a Cd ion source. Preparative parameters such as deposition potential, solution concentration, bath temperature, pH of the electrolytic bath and deposition time have been optimized by using photoelectrochemical (PEC) technique to obtain well adherent and uniform thin films. The electrodeposits were dark brown in colour. The films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption techniques. XRD studies reveal that films are polycrystalline, with hexagonal crystal structure. SEM shows that the films are compact, with spherical grains. Optical absorption studies reveal that the material exhibits a direct optical transition having band gap energy ∼1.72 eV. PEC study shows that the films are photoactive.  相似文献   

11.
《Current Applied Physics》2010,10(4):1137-1141
Mn films of ∼50 nm has been deposited by electron beam evaporation technique on cleaned and etched Si [(1 0 0), 8–10 Ω cm] substrates to realize a Mn/Si interfacial structures. The structures have been irradiated from energetic (∼100 MeV) ion beam from Mn side. The irradiated and unirradiated structures have been characterized from atomic force microscopy, X-ray diffractometry, magnetic force microscopy, and vibrating sample magnetometer facilities. It has been found that surface/interfacial granular silicide phases (of MnxSiy) are formed before and after the irradiation with a irradiation induced modifications of surface morphology and magnetic property. The surface/interface roughness has been found to increase on the irradiation from the atomic force microscopy data. The magnetic property on the irradiation shows an interesting and significant feature of an increased coercivity and a ferromagnetic like behavior in the Mn–Si structure. The observed increased coercivity has been related to the increased roughness on the irradiation. The ferromagnetism after the irradiation is a curious phenomenon which seems due to the formation of Mn–C–Si compound from the carbon dissolved in silicon.  相似文献   

12.
Multiferroic thin films with the general formula TiO2/BiFe1−xMnxO3 (x=0.00, 0.05, 0.10 and 0.15) (TiO2/BFMO) were synthesized on Au/Ti/SiO2/Si substrates using a chemical solution deposition (CSD) method assisted with magnetron sputtering. X-ray diffraction analysis shows the thin films contained perovskite structures with random orientations. Compared with BFMO films, the leakage current density of the TiO2/BFMO thin films was found to be lower by nearly two orders of magnitude, and the remnant polarizations were increased by nearly ten times. The enhanced ferroelectric properties may be attributed to the lower leakage current caused by the introduction of the TiO2 layer. The J-E characteristics indicated that the main conduction mechanism for the TiO2/BFMO thin film was trap-free Ohmic conduction over a wide range of electric fields (0-500 kV/cm). In addition, ferromagnetism was observed in the Mn doped BFO thin films at room temperature. The origin of ferromagnetism is related to the competition between distortion of structure and decrease of grain size and decreasing net magnetic moment in films due to Mn doping.  相似文献   

13.
Microstructural and electrical properties of potentiostatically electrodeposited ZnO thin films from an aqueous bath were investigated after annealing at different temperatures in Ar and 5% H2/Ar atmospheres. It is confirmed that the bandgap energy of ZnO thin films decreased with annealing from 3.42 to 3.27-3.29 eV by calculating the wavelength of the absorption region. The annealing at temperatures as low as 200 °C decreased the sheet resistance of ZnO thin films because of the extinction of Zn(OH)2 in the atmosphere. In addition, the sheet resistance of ZnO thin films decreased by annealing in a 5% H2 atmosphere, which caused an increase of carrier concentration by hydrogen reduction.  相似文献   

14.
Bismuth selenotelluride (Bi2(Te0.9Se0.1)3) films were electrodeposited at constant current density from acidic aqueous solutions with Arabic gum in order to produce thin films for miniaturized thermoelectric devices. X-ray fluorescence spectroscopy determined film compositions. X-ray diffraction pattern shows that the films as deposited are polycrystalline, isostructural to Bi2Te3 and covered by crystallites. Mueller-matrix analysis reveals that the electroplated layers are optically like an isotropic medium. Their pseudo-dielectric functions were determined using mid-infrared spectroscopic ellipsometry. Tauc-Lorentz combined with Drude dispersion relations were successfully used. The energy band gap Eg was found to be about 0.15 eV. Moreover, the fundamental absorption edge was described by an indirect optical band-to-band transition. From Seebeck coefficient measurement, films exhibit n-type charge carrier and the value of thermoelectric power is about −40 μV/K.  相似文献   

15.
In the present work, cobalt thin films deposited directly on n-Si(1 1 1) surfaces by electrodeposition in Watts bath have been investigated. The electrochemical deposition and properties of deposits were studied using cyclic voltammetry (CV), chronoamperometry (CA), ex situ atomic force microscopy (AFM), X-ray diffraction (XRD) and alternating gradient field magnetometer (AGFM) techniques. The nucleation and growth kinetics at the initial stages of Co studied by current transients indicate a 3D island growth (Volmer-Weber); it is characterized by an instantaneous nucleation mechanism followed by diffusion limited growth. According to this model, the estimated nucleus density and diffusion coefficient are on the order of magnitude of 106 cm−2 and 10−5 cm2 s−1, respectively. AFM characterization of the deposits shows a granular structure of the electrodeposited layers. XRD measurements indicate a small grain size with the presence of a mixture of hcp and fcc Co structures. The hysteresis loops with a magnetic field in the parallel and perpendicular direction and showed that the easy magnetization axis of Co thin film is in the film plane.  相似文献   

16.
Heavily doped Zn1−xMnxO (x = 0.3) films were prepared by polymeric precursor method onto glass substrates and their structural, morphological, optical and magnetic properties carefully studied. Undoped ZnO films were also prepared for the purpose of comparison. The polymeric precursor method consists in preparing a coating solution from the Pechini process followed by a three-step thermal treatment of the as deposited films at temperatures up to 550 °C for 30 min. X-ray diffraction (XRD) analysis reveals the typical hexagonal wurtzite structure of the undoped ZnO film. The addition of Mn ions leads to a dramatic reduction of the crystalline quality of film although no evidence of affectation by secondary phases is found. The affectation of the ZnO structure may be due to the formation of Mn clusters and generation of defects such as vacancies and interstitials. Here, the solubility limit of the Mn ions in ZnO should play an important role and it is discussed in the framework of ionic radius and valence states. The scanning electron microscopy (SEM) analysis shows that the surface of the doped sample was affected by the presence of cracks due, probably, to the expansion of the lattice constant of Zn0.7Mn0.3O caused by the Mn incorporation in the ZnO lattice. The existence of cluster-type structures on the surface is corroborated by atomic force microscopy (AFM). The EDX analysis, carried out on some areas in the film, yielded Mn/Zn ratios of about 0.3, which points out to an effective Mn incorporation in the film. On the other hand, the absorption edge of the doped films is red shifted to 2.9 eV (3.24 eV for undoped ZnO film) and the absorption edge is less sharp due, probably, to amorphous states appearing in the band gap. No evidence of dilute magnetic semiconductor mean-field ferromagnetic behavior is observed. The temperature dependence of the magnetization follows a Curie law suggesting pure paramagnetic behavior. The very small s-shape behavior of M versus H (without hysteresis) observed at room temperature on selected areas would stem from Mn clusters which are easily formed in transition metal doped ZnO.  相似文献   

17.
The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl3-NaCl-KCl-MnCl2 molten salts at 170 °C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.  相似文献   

18.
Magnetic thin films of NiFe and CoNiFe alloys were electrodeposited from three different deposition baths onto copper wires of 100-μm diameter. The magnetic and magnetoimpedance (MI) properties of the samples along with their microstructure were investigated as a function of thiourea additive concentrations (CT) in the plating bath. For all intermediate frequencies, the MI ratio increased with thiourea concentration in plating bath up to a critical concentration of 80 mg/l and then decreased considerably. The change in MI with thiourea concentration in electrodeposition bath was attributed to the grain size reducing action of thiourea, which in turn enhances the soft magnetic properties of the films. At higher concentration of thiourea, the sulfur inclusion increased the magnetic softness and MI value enhanced considerably. The origin of MI lies in the combined effect of domain wall motion and spin rotation, which contributes to permeability. Inductance spectroscopy (IS) was used to evaluate the magnetic characteristic of the samples by modeling coated wires in terms of equivalent electrical circuit; namely parallel LR (inductance and resistance) circuit in series with series LR circuit. The domain wall motion was found to be greatly affected by thiourea addition in the bath, which was revealed through the study of variation of these circuit parameters. The domain wall motion thereby affects the magnetic softness of samples, which is reflected in the MI enhancement.  相似文献   

19.
Mn0.06Ge0.94 samples have been grown by molecular-beam epitaxy on Ge(0 0 1)2 × 1. High-resolution transmission electron microscopy shows the coexistence of an ordered diluted Mn0.06Ge0.94 film and of nanoscopic crystallites, which were identified as Mn5Ge3 by electron diffraction. The magnetic properties of the Mn0.06Ge0.94 samples show a superposition of a paramagnetic behavior, due to the interaction of Mn atoms diluted in the Ge host, and a ferromagnetic behavior attributed to the Mn5Ge3 crystallites dispersed into the films. The Mn L2,3 X-ray absorption spectra of the Mn0.06Ge0.94 films exhibit a lineshape typical of metallic Mn, with considerably reduced multiplet structure.  相似文献   

20.
The magnetic and microstructural properties of Ni-Co films electrodeposited at different cathode potentials were investigated. The compositional analysis revealed that the Ni content increases from 13 at.% to 44 at.% in the films with increasing deposition potential. Magnetic measurements showed that the saturation magnetization, Ms of the films decreased with increase of Ni content as the deposition potential increased. Ms values changed between 1160 emu/cm3 and 841 emu/cm3. The X-ray diffraction revealed that the crystalline structure of the films is a mixture of the predominant face-centered cubic (fcc) and hexagonal closed packed. However, the mixture phase turns to the fcc because of increasing Ni content up to 44 at.% at the highest (−1.9 V) potential by enhancing the intensity of reflections from the fcc phase. The changes observed in the magnetic and microstructural properties were ascribed to the changes observed in the chemical composition caused by the applied different deposition potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号