首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report a general approach to enhance the upconversion (UC) luminescence of Er3+ doped oxides phosphors by Yb3+–MoO4 2? dimer sensitizing, which induced strong green UC emissions under the 976 nm laser diode excitation. By codoping of Yb3+ and Mo6+ in the Er3+ doped TiO2 and ZnO, the green UC emissions intensity can be selectively increased about 10 and 500 times than those of Er3+–Yb3+ codoped TiO2 and ZnO, respectively. The high excited state energy transfer between |2F7/2, 3T2> state of Yb3+–MoO4 2? dimer and 4F7/2 level of Er3+ significantly avoids the nonradiative decay processes happened at lower energy levels of Er3+, and then increases the green UC emissions efficiently. The proposed Yb3+–MoO4 2? dimer sensitizing has been realized as an efficient way to enhance the green UC emissions in other Er3+ doped oxides phosphors. It is expected that the selective enhanced green UC emissions sensitized by Yb3+–MoO4 2? dimer in Er3+ doped oxides phosphors can greatly extend their scope of applications.  相似文献   

2.
The luminescent nanocrystalline Yb3+ and Er3+ codoped KLa(WO4)2 has been prepared by Pechini method. X-ray diffraction and transmission electron microscope were used to study the structure of the obtained samples. The average grain size of these samples depended on the annealing temperature, increasing with the increase of the temperature. The cell parameters and the crystallite size of KYbxEr0.02La0.98−x(WO4)2 nanocrystalline decreased with the increase of x value. Luminescence studies showed that the intensity of upconversion emission of the Yb3+ and Er3+ codoped samples was much stronger than that of the Er3+ single doped samples (pumped by 980 nm LD). The upconversion emission mechanisms suggested that all the three bands of upconversion emissions were two-photon process.  相似文献   

3.
Ni-doped anatase TiO2 nanobelts (NBs) with different Ni2+ contents were simply prepared by combining ion-exchange with hydrothermal treatment. They were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and magnetic measurement techniques. The results showed that Ni2+ cations doped into the TiO2 lattice and no metallic nickel clusters or nanoparticles could be found. The magnetic results demonstrated that the prepared Ni-doped TiO2 samples had complex magnetic mechanism including room-temperature ferromagnetic and paramagnetic behaviors, and with the increase of Ni2+ content, the magnetization also increased under the same applied field owing to uniform distribution of Ni2+ ions in TiO2 nanobelts.  相似文献   

4.
Yb3+/Er3+ codoped β-NaYF4 microcrystals were synthesized through a facile EDTA-assisted hydrothermal method. Under 980 nm excitation, 244, 256, and 276 nm upconversion (UC) emissions were observed in NaYF4:Yb3+/Er3+ microcrystals, which were assigned to the 2I11/2 → 4I15/2, 4D7/2 → 4I15/2, and 4G9/2 → 4I15/2 transitions of Er3+ ions, respectively. Successive energy transfers (ETs) from Yb3+ to Er3+ played crucial roles in populating the high-energy states of Er3+ ions. Power dependence analysis exhibited that 244 and 256 nm UC emissions came from six-photon processes. Temperature-dependent UC emissions of 4D7/2 → 4I15/2 and 2I11/2 → 4I15/2 transitions of Er3+ were discussed and the nonradiative relaxation (NR) process of 2I11/2 → 4D7/2 was confirmed.  相似文献   

5.
Tb3+, Yb3+, Tm3+, Er3+, and Ho3+ doped Ca3(PO4)2 were synthesized by solid-state reaction, and their luminescence properties were studied by spectra techniques. Tb3+-doped samples can exhibit intense green emission under VUV excitation, and the brightness for the optimal Tb3+ content is comparable with that of the commercial Zn2SiO4:Mn2+ green phosphor. Under near-infrared laser excitation, the upconversion luminescence spectra of Yb3+, Tm3+, Er3+, and Ho3+ doped samples demonstrate that the red, green, and blue tricolored fluorescence could be obtained by codoping Yb3+-Ho3+, Yb3+-Er3+, and Yb3+-Tm3+ in Ca3(PO4)2, respectively. Good white upconversion emission with CIE chromaticity coordinates (0.358, 0.362) is achieved by quadri-doping Yb3+-Tm3+-Er3+-Ho3+ in Ca3(PO4)2, in which the cross-relaxation process between Er3+ and Tm3+, producing the 1D2-3F4 transition of Tm3+, is found. The upconversion mechanisms are elucidated through the laser power dependence of the upconverted emissions and the energy level diagrams.  相似文献   

6.
Er3+–Yb3+ co‐doped Lu3Ga5O12 nanogarnets were prepared and characterized; their structural and luminescence properties were determined as a function of the Yb3+ concentration. The morphology of the nanogarnets was studied by HRTEM. Under 488 nm excitation, the nanogarnets emit green, red, and near‐infrared light. The decay curves for the (4S3/2, 2H11/2) and 4F9/2 levels of the Er3+ions exhibit a non‐exponential nature under resonant laser excitation and their effective lifetimes are found to decrease with an increase in the Yb3+ concentration from 1.0 to 10.0 mol %. The non‐exponential decay curves are well fitted to the Inokuti–Hirayama model for S=8, indicating that the mechanism of interaction for energy transfer between the optically active ions is of dipole–quadrupole type. Upon 976 nm laser excitation, an intense green upconverted emission is clearly observed by the naked eyes. A significant enhancement of the red‐to‐green intensity ratio of Er3+ ions was observed with an increase in Yb3+ concentration. The power dependence and the dynamics of the upconverted emission confirm the existence of two‐photon upconversion processes for the green and red emissions.  相似文献   

7.
Using Na2CO3-H3BO3-NaF as fluxes, transparent RE:Na3La9O3(BO3)8 (abbr. RE:NLBO, RE=Er, Yb) crystals have been grown by the top seed solution growth (TSSG) method. The X-ray powder diffraction analysis shows that the RE:NLBO crystals have the same structure with NLBO. The element contents were determined by molar to be 0.64% Er3+ in Er:NLBO, 2.70% Yb3+ in Yb:NLBO, respectively. The polarized absorption spectra of RE:NLBO have been measured at room temperature and show that both Er:NLBO and Yb:NLBO have a strong absorption bands near 980 nm with wide FWHM (Full Wave at Half Maximum) (21 nm for Er:NLBO and 25 nm for Yb:NLBO). Fluorescence spectra have been recorded. Yb:NLBO has the emission peaks at 985 nm, 1028 nm and 1079 nm and the emission peak of Er:NLBO is at 1536 nm. Spectral parameters have been calculated by the Judd-Ofelt theory for Er:NLBO and the reciprocity method for Yb:NLBO, respectively. The calculated values show that Er:NLBO is a candidate of 1.55 μm laser crystals and Yb:NLBO is a candidate for self-frequency doubling crystal.  相似文献   

8.
Several CaF2 single crystals doped with trivalent rare-earth ions have been grown in the recent years in the form of bulk crystals by using the Bridgman method and in the form of thin films by using the MBE and LPE techniques. The spectroscopic, gain and laser properties of these crystals doped with Pr3+, on the one hand, and with Yb3+, Tm3+ or Er3+ ions, on the other hand, have been studied and are reviewed here for their laser potentials in the red and in the infrared spectral domains, respectively.  相似文献   

9.
采用4,4,4-三氟-1-苯基-1,3-丁二酮(TPB)为第一配体,4,7-二苯基-1,10-菲咯啉(Bath)为第二配体,分别制备了配合物Er(TPB)3Bath和Yb(TPB)3Bath,以及它们的混合配合物ErxYb1-x(TPB)3Bath(x=0.218,0.799,0.896,0.987),并对所制得配合物的发光性能进行了系统研究。研究结果表明,所有配合物均能发射所含稀土离子的近红外特征光,并且可以通过调节混合配合物中的nEr/nYb来调控Yb3+/Er3+之间的能量传递,进而提高Er3+离子在1530 nm处的发光。  相似文献   

10.
《Analytical letters》2012,45(15):2594-2600
A co-doped LiNb0.3Ta0.7O3:Er3+,Yb3+ ceramic was prepared by a high temperature solid state procedure. Under the excitation of 980 nm laser radiation, intense 660 nm red light and 550 nm green light emissions corresponding to the 4F9/24I15/2 and 2H11/2/4S3/24I15/2 transitions of Er3+ were observed. The change of Yb3+ concentration has a more significant influence on luminous intensity than the Er3+ concentration. The emission of red and green lights is attributed to a two-photon process. The upconversion luminescence mechanisms were analyzed in detail.  相似文献   

11.
Five up-conversion luminescence agents (Er3+:Y3Al5O12, Er3+:Yb n Y3 ? n Al5O12, Er3+:Y3B a Al5 ? a O12, Er3+:Y3Ga b Al5 ? b O12, and Er3+:Yb n Y3 ? n B a Ga b Al5 ? a ? b O12) were synthesized using sol-gel method and then the corresponding coated composites (Er3+:Y3Al5O12/TiO2, Er3+:Yb n Y3?n Al5O12/TiO2, Er3+:Y3B a Al5 ? a O12/TiO2, Er3+:Y3Ga b Al5 ? b O12/TiO2, and Er3+:Yb n Y3 ? n B a Ga b Al5 ? a ? b O12/TiO2) as photocatalysts were prepared by sol-gel coating process. The XRD and SEM were used to confirm the crystalline phase and surface morphology. The UV-vis absorption and fluorescence-emission spectra were used to research the effect of doping category and amount on the up-conversion emission ability. The photocatalytic activities were detected through the degradation of Acid Red B dye in aqueous solution. Some key parameters of catalyst amount and initial concentration of organic dye on solar light photocatalytic degradation were also examined. The extensive feasibility of prepared photocatalysts in solar light degradation was detected by other organic dyes. The results suggest that the photocatalysts can be widely used in sewage treatment.  相似文献   

12.
《Solid State Sciences》2012,14(2):287-290
Transparent glass-ceramics with Yb3+, Er3+ ions in glass matrix and tetrahedral Co2+-doped MgAl2O4 nanocrystals were synthesized. XRD patterns and FESEM micrograph of the glass-ceramics showed that MgAl2O4 nanocrystals (sizes of 10–20 nm) are uniformly dispersed in SiO2 glass matrix. Absorption and emission spectra of the glass-ceramics indicated that Yb3+, Er3+ remain in SiO2 glass matrix, while Co2+ occupied tetrahedral sites in MgAl2O4 nanocrystals, and can function as saturable absorber for Er3+. Transparent Co2+, Yb3+, Er3+ co-doped glass-ceramics possesses the spectral requirements and should be a potential laser material used for self-Q-switched microchip laser operating at 1.5–1.6 μm.  相似文献   

13.
采用共沉淀、溶胶-凝胶和固相反应法制备了GdAlO3:Er3+,Yb3+荧光粉.借助X射线衍射、扫描电子显微镜、傅里叶变换红外光谱、N2-吸附、吸收光谱和荧光光谱等手段研究了不同方法制备的GdAlO3:Er3+,Yb3+荧光粉结构、形貌、表面基团和光吸收及上转换发光性能.结果表明:用共沉淀法比固相反应法和溶胶-凝胶法可以在更温和的条件下制得纯相GdAlO3:Er3+,Yb3+荧光粉,用共沉淀法和溶胶-凝胶法制备的GdAlO3:Er3+,Yb3+荧光粉颗粒都在纳米尺寸,溶胶-凝胶法制得的样品存在相对严重的颗粒团聚现象,而用固相反应法制备的荧光粉为微米级颗粒.GdAlO3:Er3+,Yb3+荧光粉在980 nm激发的上转换发射光谱包含波长为524和546 nm的绿光与659 nm的红光,且三种方法制备的样品绿光发射强度都显著高于红光.不同方法制备的荧光粉上转换发光强度和红光/绿光强度比相差较大,共沉淀法制备的样品上转换发光强度要显著高于固相法以及溶胶-凝胶法制备的样品,而溶胶-凝胶法制备的样品发光中红光/绿光相对强度比最高.红外光谱显示,不同方法制备的GdAlO3:Er3+,Yb3+荧光粉表面OH-、CO32-及CO2官能团含量不同,溶胶-凝胶法制备的样品要明显高些.基于红外光谱、不同Er3+和Yb3+离子掺杂浓度及不同激光功率上转换发光的结果,对Er3+和Yb3+之间的能量传递过程及不同方法制备荧光粉的上转换发光性能进行了讨论.  相似文献   

14.
Bi3+ and lanthanide ions have been codoped in metal oxides as optical sensitizers and emitters. But such codoping is not known in typical semiconductors such as Si, GaAs, and CdSe. Metal halide perovskite with coordination number 6 provides an opportunity to codope Bi3+ and lanthanide ions. Codoping of Bi3+ and Ln3+ (Ln=Er and Yb) in Cs2AgInCl6 double perovskite is presented. Bi3+‐Er3+ codoped Cs2AgInCl6 shows Er3+ f‐electron emission at 1540 nm (suitable for low‐loss optical communication). Bi3+ codoping decreases the excitation (absorption) energy, such that the samples can be excited with ca. 370 nm light. At that excitation, Bi3+‐Er3+ codoped Cs2AgInCl6 shows ca. 45 times higher emission intensity compared to the Er3+ doped Cs2AgInCl6. Similar results are also observed in Bi3+‐Yb3+ codoped sample emitting at 994 nm. A combination of temperature‐dependent (5.7 K to 423 K) photoluminescence and calculations is used to understand the optical sensitization and emission processes.  相似文献   

15.
为改善无机Y2O3上转换纳米粒子(UCNPs)的荧光性能,且同步实现其在生物体内的成像标定,通过共沉淀法及梯度合成工艺,制备出各组不同壳层厚度的Y2O3:Yb3+,Er3+@Y2O3:Yb3+ UCNPs。利用透射电子显微镜(TEM)扫描、X射线衍射(XRD)、上转换荧光(UCL)光谱、UCL寿命等对样品的形貌、结构及荧光性能进行了表征。结果表明:利用共沉淀法制得小尺寸Y2O3:Yb3+,Er3+@Y2O3:Yb3+纳米核壳颗粒,平均粒径范围在25.57~26.24 nm之间。通过调整Yb3+浓度和水浴时间优化合成工艺,获得高发射强度、长荧光寿命方案(80% Yb掺杂,8 h水浴)。高红绿比的荧光发射特征,决定其在小动物体内荧光标定检测时更宜采用红色信道。  相似文献   

16.
To develop new emission-tunable upconversion (UC) phosphors, the Sr3AlO4F:5%Yb3+, xEr3+, yHo3+ (0 ≤ x ≤ 1%, 0 ≤ y ≤ 1%) samples were prepared by conversional solid-state reaction method, and their luminescence properties upon 980 nm excitation were studied. Upon 980 nm excitation, Yb3+-Er3+ codoped Sr3AlO4F shows a predominant emission peak between 645 and 700 nm which is attributed to the 4F9/2-4I15/2 transition of Er3+, and the Er3+ green emissions have been almost quenched. In this case, the yellowish green emitting light is obtained. The possible reason was interpreted by the energy level diagram and the proposed UC mechanism. For Yb3+-Ho3+ codoped Sr3AlO4F, three emissions are observed obviously which are all derived from the Ho3+ ion. The corresponding chromaticity coordinates indicate a red emission has been gained. To realize the tunable emission, the typical Sr3AlO4F:5%Yb3+, 0.2%Er3+, 1%Ho3+ phosphor was developed, and its emission spectrum includes the emission peaks of both Er3+ and Ho3+. Correspondingly, the sample gives a yellow emission.  相似文献   

17.
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln3+ ion mainly shows its characteristic emissions in the core-shell particles from Gd2O3:Ln3+ (Eu3+, Tb3+, Sm3+, Dy3+, Er3+, Ho3+) shells.  相似文献   

18.
Monolithic silica xerogels doped with different concentrations of Er3+, Yb3+ and Al3+ were prepared by sol-gel route. Densification was achieved by thermal treatment in air at 950°C for 120 h with a heating rate of 0.1°C/min. We studied the luminescence properties of the 4I13/2 4I15/2 emission band of Er3+ as a function of the Al/Er/Yb concentration and we paid particular attention to the alumina effects. Raman spectroscopy and Vis-NIR absorption were used to monitor the degree of densification of the glasses and the residual OH content.  相似文献   

19.
Transparent glass ceramics in the system SiO2-B2O3-PbO-CdO-PbF2-CdF2-YbF3-ErF3 showing infrared to visible anti-Stokes (upconversion) luminescence are studied in the present work. The glass compositions have been optimized in order to reduce the melting temperature and, hence, to obtain laboratory scale samples with good optical quality. Erbium-doped nanoscale Pb4Yb3F17 crystals are precipitated in the precursor glasses during annealing at temperatures 30-40 K above Tg. A kinetically self-constrained growth explains the nano sizes of the crystals. Both the Stokes and anti-Stokes luminescence spectra of glasses could be explained with clustering of the Yb3+ and Er3+ ions in fluorine-rich regions. At the annealing temperature these regions act as nucleation precursors. The crystal growth further enhances the local concentration of these ions. Consequently, a series of energy transfer and energy cross relaxation processes occurs between adjacent rare earth ions leading to the observed luminescence spectra of the glass ceramics studied.  相似文献   

20.
Transparent oxyfluoride glass-ceramics (GCs) with embedded β-Na1.5Y1.5F6 crystals doped with Er3+ ions were fabricated by a melt-quenching method with subsequent heat-treatment. The structural characterizations and spectroscopic techniques were performed to verify the precipitation of β-Na1.5Y1.5F6 crystals and partition of the Er3+ dopant into the crystals. Bright green up-conversion (UC) emission was achieved in Er3+-doped glass-ceramic (Er-GC). Furthermore, the temperature-dependent visible UC behavior based on thermally coupled energy levels (TCLs) and non-thermally coupled energy levels (NTCLs) was also examined in the temperature range 298 k to 823 K with maximum relative sensitivity (Sr) of 1.1% K−1 at 298 K for TCLs in Er-G and Er-GC samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号