首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Circulation pumps are an important source of noise from domestic central heating systems. Pumps can generate airborne, liquid-borne and structure-borne sound and although standards exist for airborne and liquid-borne sources, none do for structure-borne sources. This is primarily because the structure-borne acoustic power delivered by the pump not only depends on the pump but also on the connected receiving system, which can be a complicated combination of pipes, valves and radiators. Also pumps deliver liquid-borne and structure-borne acoustic power simultaneously and their relative contributions to the sound radiated from the pipe system is not obviously obtainable. The approach proposed is to estimate the emission from the pump into semi-infinite pipes of material and cross-section typical of heating systems. Then to estimate the ‘mixing’ effect of bends, joints and other pipe discontinuities, due to wave mode conversion, as described in a companion paper. In the present paper, it is demonstrated that the structure-borne power can be calculated from the measured free velocity and mobility of the pump for each component of vibration and from receiver mobilities of idealized pipe systems. The structure-borne power is compared with the liquid-borne power measured directly by intensimetry.  相似文献   

3.
This paper considers a practical structure-borne sound source characterization for mechanical installations, which are connected to plate-like structures. It describes a laboratory-based measurement procedure, which will yield single values of source strength in a form transferable to a prediction of the structure-borne sound power generated in the installed condition. It is confirmed that two source quantities are required, corresponding to the source activity and mobility. For the source activity, a high-mobility reception plate method is proposed which yields a single value in the form of the sum of the squared free velocities, over the contact points. A low-mobility reception plate method also is proposed which, in conjunction with the above, yields the source mobility in the form of the average magnitude of the effective mobility, again over the contact points. Experimental case studies are described and the applicability of the laboratory data for prediction and limitations of the approach are discussed.  相似文献   

4.
Taps and other valves are major sound sources in piping systems and can cause unacceptable noise levels in buildings. The noise results from the fluid-, structure- and air-borne sound emission. At present the acoustic emission of water appliances is tested according to a European standard, the shortcomings of which are apparent as a result of a round robin test of different European laboratories. As a result, there are currently neither acceptable measurement methods for water appliances available nor input data for prediction models. This paper considers methods of characterizing water appliances as sources of structure-borne sound. The concepts of mobility and free velocity are employed for a source characterisation based on power. Taps are considered alone and also in combination with a basin, where again the mobility and free velocity are used. A reception plate method is assessed as an alternative. The two methods each provide an independent characterisation of a structure-borne sound source as a single value. The values are on a power basis and provide input data suitable for prediction of the installed structure-borne power and thence the resultant sound pressure in adjacent rooms. Measured and predicted values of sound pressure level, caused by a wash-basin installed in an adjacent room, are compared.  相似文献   

5.
Transfer path analysis (TPA) plays an important role for identifying and quantifying the contribution by airborne and structure-borne in the automotive industry. The main bottleneck of the TPA method is the test time consumption and complex procedure. It becomes a key target in many applications to find out the source with dominant contribution to overall noise rather than to identify each source. In recent years the contribution pattern of sources to the vehicle overall interior noise has changed with the reduction of engine noise, which masks all other sources. The panel radiation noise of vehicle body could not be ignored. There is an increasing demand for analyzing the sound quality contribution of sound sources in simple ways. The procedure for analyzing sound quality contribution of panel radiation noise is suggested in this study, in which an operational path analysis (OPA) method combined with partial singular value decomposition (PSVD) analysis is applied and sound quality objective assessment is introduced. The experimental research for verifying the procedure is finished, from which the source with largest sound quality contribution is picked up from three sources. For engineering application, the sound quality contributions of panels to the interior noise of a micro commercial vehicle are analyzed by using the procedure. By investigating the contributions of sound sources to each sound quality attribute, the dominant sound source is determined.  相似文献   

6.
Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy.  相似文献   

7.
Vibro-acoustic source characterization is an essential task in vehicle development to enable prediction of receiver response. For structure-borne noise, the interface forces in multiple degrees of freedom due to internal loads are often quantified for root cause analyses in a single system assembly, as in transfer path analysis (TPA). However, for a reliable prognosis of the acoustic performance of a known component such as a motor or pump, a receiver-independent source characterization is required, and the method of acquiring blocked forces from in-situ measurements has been shown to be a preferred technique for such purposes. The benefits of the method are the characterization of the intrinsic properties of the source and the possibilities of measuring the component attached to receivers with varying dynamic properties.  相似文献   

8.
A procedure has been developed for measuring the structure-borne sound sensitivity of building structures to stationary excitation. This procedure has the advantage that it can be conducted with simple sound pressure and vibration measurements. The precision and reproducibility of the measurement procedure have been tested. This method permits the measurement of the vibratory point forces due to structure-borne sound sources in buildings or other systems.In order to determine the structure-borne sound sensitivity and the vibratory point forces to transient excitation, impulses were tested and compared with the results obtained with stationary excitation.  相似文献   

9.
Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source strength and the prediction of power transmission to a supporting structure or the machine casing itself can be greatly simplified if all mobility cross-terms and spatial cross-coupling of source velocities can be neglected in the analysis. In many cases this gives an acceptable engineering accuracy, especially at mid- and high-frequencies. For structurally compact machines, however, the influence of cross-coupling cannot always be ignored. The present paper addresses this problem and examines the transmission of structure-borne sound power by including spatial cross-coupling between pairs of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan that was mounted resiliently in a vacuum cleaner casing. It is found that cross-coupling plays a significant role, but only at frequencies below 100 Hz for the examined system.  相似文献   

10.
In the analysis of machinery noise the aspect of sound source characterisation is of importance. Unlike for airborne sources, no widely applicable methods are available yet for structure-borne sound sources. In previous work a ‘pseudo-forces' methodology was suggested. In this approach fictitious forces on the outer surface replace the internal excitation in a source. The application of this approach is illustrated by experiments using a small air-compressor. In this example the pseudo-forces gave a good reconstruction of the response field (within 3 dB). Confidence intervals are derived for the results, which are 2-3 dB wide. This spread is separated into spread caused by inefficiencies of the method, spread caused by random measurement errors and the spread which is inherently generated by the source itself. These causes together enable the explaination of most of the deviations. Therefore, the pseudo-forces method is expected to serve well for particular structure-borne noise related questions.  相似文献   

11.
As is discussed in Part I, the structure-borne sound power transmission between multi-point, coupled structures can theoretically be described by effective mobility. The results from full scale measurements of transfer and point mobilities of compound structures show that in some cases the effective point mobility can be approximated by the ordinary point mobility. Estimation procedures for the ordinary point mobilities containing manageable expressions for engineering applications have been developed and some examples are presented. The basic reasoning behind these procedures are described. Promising agreement has been obtained with measurement results. Also, correction factors for the ordinary point mobility to obtain an approximate point mobility and their approximate frequency bounds are given. Comparison with measured effective point mobility shows good agreement.  相似文献   

12.
A simple method to measure structure-borne sound transmission is described. Measurement is made of the level difference in the acceleration between two structural elements using a plastic headed hammer as a noise source. The method is at least as accurate as conventional measurements made under steady-state conditions using continuous noise sources and can be carried out with less instrumentation on site and in about a tenth of the time.The portability of the source greatly simplifies the measurements as a hammer can be used to hit structures in a wide variety of positions whereas shakers can only be used in limited situations. In addition, attaching a shaker to a wall can damage the wall surface whereas, with care, a hammer hit will not.  相似文献   

13.
M.M. Sph  B.M. Gibbs 《Applied Acoustics》2009,70(11-12):1431-1439
In a companion paper, a laboratory method is described to obtain the structure-borne sound power of machines before they are installed in heavy-weight buildings. The laboratory method is based on the concept of the reception plate. In this paper, the method is shown to provide appropriate input data for the prediction of the installed structure-borne power, and thence the resultant sound pressure level in rooms removed from the room containing the machine. Case studies of two common sources are described: a whirlpool bath and a water cistern. It is shown that the method can be incorporated into recently proposed standard prediction models and that sound pressure levels in buildings can be predicted.  相似文献   

14.
A method for the prediction of the transmission of structure-borne sound in ship structures is presented. Various methods to decrease the noise levels in the accomodation spaces in superstructures are investigated in model tests. The attenuation of structure-borne sound in the propagation path between source and receiver is increased by means of damping layers, resilient mounts and changed boundary conditions between main deck and superstructure. Damping layers are found to have only a local effect. Resilent mounts between superstructure and main deck can reduce the noise levels in the superstructure by the order of 10 dB(A).  相似文献   

15.
An approximate approach is described, for obtaining the source quantities required for the calculation of structure-borne sound power from machines into supporting lightweight building elements. The approach is in two stages, which are based on existing international Standards for measurement. The first stage involves direct measurement of the source free velocity at each contact, to give the sum of the square velocities. The second stage is based on the reception plate method and yields the single equivalent blocked force, which approximates the sum of the square blocked forces. The applicability of the source data obtained has been investigated in a case study of a fan unit on a timber joist floor. The approach contains several significant simplifying assumptions and the uncertainties associated with them are considered. For the case considered, the power transmitted into the floor is estimated by the approximate method to within 5 dB of the true value, on average.  相似文献   

16.
A method for characterisation of structure-borne sound sources is proposed and investigated for the special but common case of machines in heavy-weight homogeneous building structures. The method is based on the concept of the reception plate where the total structure-borne sound power from the machine under test is assumed equal to the power dissipated by a plate attached to the machine. The method is relatively simple and allows comparison of sources on a power basis, and of tests results at different laboratories. Additionally the data obtained is in a form suitable for transformation into an installed structure-borne power and thence for the resultant sound pressure generated in buildings. The method is validated by cross-spectral and mobility methods. A study of the uncertainty of the power estimate was performed by numerical modelling and measurement.  相似文献   

17.
The work reported in this paper addresses the problem of structure-borne sound transmission between vibrating sources and ribbed-plate receiver structures. Vibrating sources, such as pumps, motors, fans, etc., transmit vibro-acoustic power, causing noise complaints by occupants in cars, trains, aircraft, buildings and/or material fatigue and damage. The transmission process is complicated in that sources transmit power through several contacts and by up to six components of excitation at each contact. The structure-borne sound power is a function of source activity, source mobility and receiver mobility, and all three quantities must be known to some degree. For non-homogeneous receiver structures, such as thin-plate cavity constructions or lightweight framed constructions, the sheathing plates are typically fastened to the framing members using bolts, screws or spot-welded joints. Hence the resulting system is a point-connected ribbed plate structure and the receiver mobility is expected to vary significantly with position. Since measured receiver data seldom is available for prediction purposes, a method of estimating the point and transfer mobility of point connected ribbed plates is required. In this paper, an approximate approach, based on substitution forces, is described. The model uses infinite beam and infinite plate behaviour as input quantities. Estimates of point and transfer mobility are compared with measured results using a timber joist floor construction as an example.  相似文献   

18.
Two experiments explored how frequency content impacts sound localization for sounds containing reverberant energy. Virtual sound sources from thirteen lateral angles and four distances were simulated in the frontal horizontal plane using binaural room impulse responses measured in an everyday office. Experiment 1 compared localization judgments for one-octave-wide noise centered at either 750 Hz (low) or 6000 Hz (high). For both band-limited noises, perceived lateral angle varied monotonically with source angle. For frontal sources, perceived locations were similar for low- and high-frequency noise; however, for lateral sources, localization was less accurate for low-frequency noise than for high-frequency noise. With increasing source distance, judgments of both noises became more biased toward the median plane, an effect that was greater for low-frequency noise than for high-frequency noise. In Experiment 2, simultaneous presentation of low- and high-frequency noises yielded performance that was less accurate than that for high-frequency noise, but equal to or better than for low-frequency noise. Results suggest that listeners perceptually weight low-frequency information heavily, even in reverberant conditions where high-frequency stimuli are localized more accurately. These findings show that listeners do not always optimally adjust how localization cues are integrated over frequency in reverberant settings.  相似文献   

19.
赵报川  杨涛  赵永峰 《应用声学》2017,36(5):445-454
针对常规统计最优近场声全息在空间多源声场重建过程中所需波函数项数多、重建精度不理想的问题,本文提出了一种基于振速测量的改进统计最优近场声全息算法。与常规算法不同,改进算法主要根据声源特点选取合适的波函数组合来计算声场传递矩阵。通过数值仿真初步验证了该方法的准确性和有效性,并与常规算法进行了详细的对比分析。仿真结果表明,改进算法重建精度高,随频率的变化相对误差波动较小,且随着频率的增大相对误差有逐渐减小的趋势;此外,不同的波函数组合,重建效果差异很大,当选取的波函数与声源共形且数量一致时重建效果最好。  相似文献   

20.
An application of Prony's method for evaluating the acoustic power and location of sound sources from spatially sampled data is described. A sound source considered as a point source has an intensity proportional to the inverse square of the distance between source and observation point. The Fourier transform of this intensity function is an exponential function with a real exponent. The shift property of the Fourier transform results in a spectral change in the phase angle, which is expressed in the transform domain by a multiplicative exponential function of pure imaginary exponent. In this paper the usual time axis of the Fourier pair of time and frequency is treated as a variable denoting the location of the sound source. Accordingly, each spectral component of spatially sampled sound intensity generated by n point sources can be expressed as a linear combination of n complex exponentials. By applying Prony's method to the spectral data, these unknown exponents can be calculated numerically. This paper deals with an estimation procedure to find the location and power of a noise source. The estimation is done by minimizing the sum of the squares of the errors between the model and measured data. The proposed method has general applicability to problems where the so-called inverse square law for intensity can be assumed to be valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号