首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM) were carried out to investigate the structural properties of the GaP/In0.48(Al0.7Ga0.3)0.52P heterostructures grown on GaAs (0 0 1) substrates. The lattice-matched In0.48(Al0.7Ga0.3)0.52P/GaAs material system could be used as a defect-free substrate because no lattice misfit exists between the In(AlGa)P layer and the GaAs substrate. Both TEM and HREM measurements indicated that there were not only misfit dislocations, but also microtwins at the GaP/In(AlGa)P heterointerface. The mechanism of the microtwins formation is elucidated.  相似文献   

2.
A novel horizontal metal organic vapor phase epitaxy (MOVPE) system, which is capable of handling six 3 inch wafers or eighteen 2 inch wafers mounted on a 10 inch diameter susceptor, has been developed for the growth of III–V compound semiconductors. The characteristic features in this system are “triple flow channel” gas injection and “face-down” wafer setting configuration. The inlet for the source gas flow is divided into three zones (upper, middle and lower flows for hydrides, organometals and hydrogen, respectively) to control the concentration boundary layer and the growth area. The wafers are placed inversely to prevent thermal convection and particles on the growing surface. The independent controlled three-part heating system is also adopted to achieve a uniform temperature distribution over an 8 inch growing surface. The thickness and the doping of GaAs, Al0.3Ga0.7As, In0.48Ga0.52P and In0.2Ga0.8As grown by this system are uniform within ± 2% over all 3 inch wafers.  相似文献   

3.
Effectively atomically flat interfaces over a macroscopic area (200 μm diameter) have been achieved in GaAs/Al0.7Ga0.3As quantum wells (QWs) with well widths of 3.6-12 nm grown on (411)A GaAs substrates by molecular beam epitaxy (MBE) for the first time. A single and very narrow photoluminescence peak (FWHM, full width at half maximum, is 6.1 meV) was observed at 717.4 nm for the QW with a well width of 3.6 nm at 4.2 K. The linewidth is comparable to that of growth-interrupted QWs grown on (100)-oriented GaAs substrates by MBE. A 1.5 μm thick Al0.7Ga0.3As layer with good surface morphology also could be grown on (411)A GaAs substrates in the entire growth temperature region of 580-700°C, while rough surfaces were observed in Al0.7Ga0.3As layers simultaneously grown on (100) GaAs substrates at 640-700°C. These results indicate that the surface of GaAs and Al0.7Ga0.3As grown on the (411)A GaAs substrates are extremely flat and stable on the (411)A plane.  相似文献   

4.
In this paper, we present the results of structural and photoluminescence (PL) studies on vertically aligned, 20-period In0.33Ga0.67As/GaAs quantum dot stacks, grown by molecular beam epitaxy (MBE). Two different In0.33Ga0.67As/GaAs quantum dot stacks were compared. In one case, the In0.33Ga0.67As layer thickness was chosen to be just above its transition thickness, and in the other case, the In0.33Ga0.67As layer thickness was chosen to be 30% larger than its transition thickness. The 2D–3D growth mode transition time was determined using reflection high-energy electron diffraction (RHEED). Structural studies were done on these samples using high-resolution X-ray diffraction (HRXRD) and cross-sectional transmission electron microscopy (XTEM). A careful analysis showed that the satellite peaks recorded in X-ray rocking curve show two types of periodicities in one sample. We attribute this additional periodicity to the presence of an aligned vertical stack of quantum dots. We also show that the additional periodicity is not significant in a sample in which the quantum dots are not prominently formed. By analyzing the X-ray rocking curve in conjunction with RHEED and PL, we have estimated the structural parameters of the quantum dot stack. These parameters agree well with those obtained from XTEM measurements.  相似文献   

5.
AlxGa1−xAs and AlxIn1−xAs alloys were grown on GaAs and InP, respectively, by chemical beam epitaxy, using trimethylamine alane (TMAA) as the source of aluminium. TMAA could be used properly only after some problems had been solved. Low carbon and oxygen concentrations were obtained in both alloys, leading to residual hole concentrations of 2 × 1016 cm-3 in Al0.3Ga0.7As. The abruptness of the AlGaAs/GaAs interface proved the absence of TMAA memory effect. The control of AlxIn1−xAs solid composition was more difficult than for GaxIn1−xAs, but was less sensitive to growth temperature. Photoluminescence intensities of Al0.3Ga0.7As and Al0.48In0.52As grown at 510°C were similar to those of MBE grown materials.  相似文献   

6.
Praseodymium oxide was used for the gettering of background impurities from the melt, during In0.53Ga0.47As/InP LPE growth. The low amount of PrO2 in the growth solution enables one to prepare n-type In0.53Ga0.47As epitaxial layers with electron concentration in the range of 2 × 1014 to 2 × 1016 cm-3 and electron mobilities of 11,000 and 8400 cm2/V·s, respectively. These results were achieved without long time baking of the melt; homogenization lasted only 1 h. The electrical parameters and photoluminescence spectra of the grown layers are presented.  相似文献   

7.
Giant step structures consisting of coherently aligned multi-atomic steps were naturally formed during the molecular beam epitaxy growth of Al0.5Ga0.5As/GaAs superlattices (SLs) on vicinal (110)GaAs surfaces misoriented 6° toward (111)A. The growth of AlAs/AlxGa1−xAs/AlAs quantum wells (QWs) on the giant step structures realized Alx0Ga1−x0As (x0<x) quantum wires (QWRs). We studied the giant step structures and the QWRs by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM observations revealed that the QWRs were formed at the step edges. The cross sections of the QWRs were as small as 10 nm×20 nm and the lateral distances between them were about 0.15 μm. We clarified the roles of the SLs to form the coherent giant step structures. From EDX analysis, it was estimated that the AlAs composition in the Al0.5Ga0.5As layers varied from 0.5 (terrace) to 0.41 (step edge). In the AlAs/AlxGa1−xAs/AlAs QWs, the AlAs compositional modulation and the confinement by the AlAs barriers led to the embedded Alx0Ga1−x0As regions. These results supported the existence of the Alx0Ga1−x0As QWRs on the giant step structures.  相似文献   

8.
Strong enhancement in the luminescence intensity is observed in Al0.22Ga0.78As epitaxial layers grown on misoriented (111)B GaAs as compared to those simultaneously grown on (100) GaAs. For a 1° misorientation the luminescence intensity is almost 1° to 1000 times that of the (100) layers, depending on the growth temperature. Room temperature electron mobility for 3° misoriented (111)B Al0.18Ga0.82As is 19% higher than that for side-by-side grown (100). The strong luminescence associated with a large red shift of 90 meV and the 19% mobility enhancement are related to the long range composition ordering in (111)B AlGaAs, which is observed by cross-sectional transmission electron microscopy in a 280 å Al0.4GaAs quantum well heterostructure with Al0.7GaAs barriers grown on (111)B GaAs substrates.  相似文献   

9.
Data are presented on the luminescence characteristics of InGaP/InAlP heterostructures with oxidized InAlP cladding layers grown by metalorganic chemical vapor deposition. The structures are grown on GaAs substrates and consist of either a 20 nm thick In0.5Ga0.5P quantum well or a 0.75 μm InGaP layer sandwiched between two InAlP bulk barriers or between two 10-period In0.5Al0.5P/InxGa1−xP strain-modulated superlattice heterobarriers, where x varies from 0.5 to 0.45 and the period of the superlattice is 3 nm. The top InAlP cladding layer of the InAlP/InGaP heterostructures is oxidized for 2–5.5 h at 500°C in an ambient of H2O vapor saturated in a N2 carrier gas. Photoluminescence and time-resolved photoluminescence studies at room temperature show that, as a result of the oxidation of a portion of the top InAlP cladding layer, the photoluminescence emission intensity and lifetime from the InGaP QWs increase significantly.  相似文献   

10.
A high density of 1.02×1011 cm−2 of InAs islands with In0.15Ga0.85As underlying layer has been achieved on GaAs (1 0 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 μm photoluminescence (PL) from InAs islands with In0.15Ga0.85As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 μm wavelength quantum dots devices.  相似文献   

11.
Hydrogen radicals are decisive for the low-temperature growth and carbon doping of In0.53Ga0.47As in LP-MOVPE. This is demonstrated for the growth of highly p-type doped In0.53Ga0.47As layers with CCl4 as dopant source. Perturbed angular correlation measurements (PAC) were used to investigate the passivation of acceptors by hydrogen in low-temperature grown In0.53Ga0.47As. Based on the above analysis an InP-based layer stack is developed which employs low-temperature growth of the base layer, high-temperature growth of the remaining HBT layers, and an in situ post-growth annealing under TMAs/N2 ambient.  相似文献   

12.
The crystallinity and solar cell efficiency of Al0.22Ga0.78As layers grown on Si substrates have been studied by varying the thermal cycle annealing (TCA) temperature. The optimum TCA temperature to obtain an Al0.22Ga0.78As layer with long minority carrier lifetime and high conversion efficiency has been presented. The active-area conversion efficiency of an Al0.22Ga0.78As solar cell on a Si substrate as high as 10.2% has been obtained under AM0 and 1 sun conditions.  相似文献   

13.
A wire structure with 100 nm scale buried in AlGaAs is shown to be formed spontaneously during the molecular beam epitaxial (MBE) growth of AlGaAs on a pre-patterned substrate. Scanning electron microscope (SEM) and photoluminescence (PL) study revealed that a triangular-shaped wire region with Al content of 0.12 was embedded by Al0.3Ga0.7As with fairly sharp boundaries. The cross-sectional dimensions and the Al molar fraction of the wire are shown to be independent of the patterned mesa width on which the wire structure is grown.  相似文献   

14.
We present results on a study of strained In0.82Ga0.18As/InP quantum wells (QWs) grown by gas source MBE. From transmission electron microscopy, we find that the onset of dislocation creation occurs for thickness around 60 Å. Strain release is found to induce a dramatic effect on the carrier lifetime as shown by time-resolved photoluminescence technique: lifetimes values of 2 ns are measured on QWs with thickness of 18 and 40 Å, but drop to 60 ps on a 64 Å thick QW.  相似文献   

15.
In0.53Ga0.47As/InP avalanche photodiodes (APDs) with separate absorption and multiplication (SAM) regions have been grown by gas-source molecular beam epitaxy (GSMBE). These mesa-structure diodes, with a mesa diameter of 150 μm, exhibit a very low dark current of 17 nA, and primary unmultiplied dark current of less than 1.0 nA at 90% of the breakdown voltage. A gain as high as 100 is observed near the breakdown. Good uniformities of punch-through voltage and breakdown voltage were obtained on a 16 mm×16 mm wafer. Also, a premature breakdown was observed in the In0.53Ga0.47As/InP SAM-APDs with a V-shaped defect density of 25,000 cm-2.  相似文献   

16.
The specular reflectivity of strained InxGa1−xAs surfaces grown by molecular beam epitaxy on InAs (100) substrates is measured with reflection high-energy electron diffraction (RHEED). A discontinuous change in the surface reflectivity is observed as the substrate temperature is increased above the transition point where As desorbs from the surface. A clear hysteresis loop is revealed as the substrate temperature is decreased. The substrate temperature required for desorption of surface As increases with Ga composition. A comparison between experimental results and theoretical calculations based on a Monte Carlo simulation shows that the average vertical interaction is increasing with Ga fraction. Fluctuations in alloy composition across the surface result in In-rich domains from which As is preferentially desorbed. The sudden loss of As, corresponding to a first order phase transition, occurs when the As desorbed domains attain a critical size. The metastability of the phase transition is shown to be a minimum for In0.5Ga0.5As layers.  相似文献   

17.
We have investigated the temperature and excitation power dependence of photoluminescence properties of InAs self-assembled quantum dots grown between two Al0.5Ga0.5As quantum wells. The temperature evolutions of the lower- and higher-energy transition in the photoluminescence spectra have been observed. The striking result is that a higher-energy peak appears at 105 K and its relative intensity increases with temperature in the 105–291 K range. We demonstrate that the higher-energy peak corresponds to the excited-state transition involving the bound-electron state of quantum dots and the two-dimensional hole continuum of wetting layer. At higher temperature, the carrier transition associated with the wetting layer dominates the photoluminescence spectra. A thermalization model is given to explain the process of hole thermal transfer between wetting layer and quantum dots.  相似文献   

18.
InGaAs/InAlAs in-plane superlattices (IPSLs) composed of InAs/GaAs and InAs/AlAs monolayer superlattices were grown using molecular beam epitaxy. The substrates were misoriented (110) InP tilting 3° toward the [00 ] direction. We grew half monolayers of AlAs and GaAs and single monolayers of InAs alternately, keeping regular arrays of single monolayer steps. The structures were evaluated by transmission electron microscopy (TEM). In a transmission electron diffraction pattern from the ( 10) cross-section, we observed two types of superstructure spot pairs double-positioned in the [001] direction, indicating the formation of the intended IPSL structures. In a cross-sectional TEM dark-field image, we observed the InGaAs/InAlAs superlattice structures formed almost in the [001] direction. The mean period of the superlattices was approximately 4 nm, which was comparable to the terrace width expected from the substrate tilt angle. However, IPSL structures were not completely formed, i.e., the lateral interfaces meandered along the growth direction, and partial disorderings were often observed. The photoluminescence spectrum from the IPSL had a peak corresponding to the InGaAs (2 nm thick)/InAlAs (2 nm thick) superlattice in addition to a peak corresponding to the In0.5Al0.25Ga0.25As alloy.  相似文献   

19.
The electrical properties of Se-doped Al0.3Ga0.7As layers grown by molecular beam epitaxy (MBE) on GaAs(111)A substrates have been investigated by Hall-effect and deep level transient spectroscopy (DLTS) measurements. In Se-doped GaAs layers, the carrier concentration depends on the misorientation angle of the substrates; it decreases drastically on the exact (111)A surface due to the re-evaporation of Se atoms. By contrast, in Se-doped AlGaAs layers, the decrease is not observed even on exact oriented (111)A. This is caused by the suppression of the re-evaporation of Se atoms, by Se---Al bonds formed during the Se-doped AlGaAs growth. An AlGaAs/GaAs high electron mobility transistor (HEMT) structure has been grown. The Hall mobility of the sample on a (111)A 5° off substrate is 5.9×104 cm2/V·s at 77 K. This result shows that using Se as the n-type dopant is effective in fabricating devices on GaAs(111)A.  相似文献   

20.
We have investigated the effect of the barrier strain in +1.65%-strained In0.77Ga0.23As/InGaAs multiple quantum wells (MQWs) on the structural and optical properties by means of double-crystal X-ray diffraction, transmission electron microscopy (TEM), and room-temperature photoluminescence (PL). The optimum condition of the barrier layer deduced from the X-ray and the PL measurements was nearly lattice-matching, i.e., strain from −0.40 to +0.20% is required for the sharp X-ray diffraction satellite peaks and from −0.17 to +0.14% for large PL intensity. Under compressive strain in the barrier layer, misfit dislocations are introduced into the MQW structures. In the case of tensile strain, however, threading dislocations originating from the thickness undulations in the wells and the barriers are observed. The TEM studies reveal that the thickness undulations are induced by the compositional modulation. The undulation and modulation are enhanced by increasing the tensile strain in the barrier layers. These results indicate that the strain-compensation does not work well on the MQW containing such highly strained InGaAs wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号