首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Complexes of the type M(CO)5(N-N), M(CO)4(N-N) and M(CO)3(N-N)2, where M is Cr, Mo or W and N-N is 1,8-naphthyridine(napy), 2-methyl-1,8-naphthyridine(2-mnapy) or trans-decahydro-1,8-naphthyridine(dhnapy), have been prepared and characterized by infrared and proton magnetic spectroscopy. Complexes of the type Mo(CO)3(N-N)(napy), where N-N is 1,10-phenanthroline(phen), 2,2′-bipyridine(bipy), 2,9-dimethyl-1,10-phenanthroline(2,9-dmphen) or 2,7-dimethyl-1,8-naphthyridine (2,7-dmnapy), were also prepared and characterized by infrared spectroscopy. In these systems, the various naphthyridine donors exhibit the unique ability to behave as both mono- and bidentate ligands. The mode of bonding between the metal and heterocycles is determined by proton magnetic resonance data.  相似文献   

2.
The known 1,8‐naphthyridine‐2,7‐dicarboxaldehyde was prepared by SeO2 oxidation of 2,7‐dimethyl‐1,8‐naphthyridine. The dimethylated naphthyridine molecule was assembled from an adaptation of the Skraup synthesis using 2‐amino‐6‐methylpyridine and crotonaldehyde to afford a reproducible 37% yield, and constitute a significant advance over the literature of this reaction. The condensation of 1,8‐naph‐thyridine‐2,7‐dicarboxaldehyde with various primary amines (R = ‐C6H11, ‐CH2C6H5, ‐C(CH3)3, ‐C10H15, and CH2CH2SCH2CH3) in alcohol affords diimines 1(a‐e) . The inherent crystallinity of 1(a‐e) affords pure compounds in reasonable to excellent yields (ca. 70%) after evaporation of solvent and recrystallization. The anticipated spectroscopic features of (N=C‐H) 1H nmr shift and v(C=N) in the ir spectrum appear around 8.50 δ and 1640 cm?1, respectively, for the series 1(a‐e) . These novel naph‐thyridines typically display the signature 1H nmr doublets at ca. 8.15‐8.30 δ ascribed to the 3 and 4 naphthyridine protons, consistent with a mirror plane (through the quaternary carbons) perpendicular to the naphthyridine plane, and syn, syn relationships of the naphthyridine moiety with each imine nitrogen lone pair. Complexation studies of 1(a‐e) with transition metals of biological relevance such as copper(I) and copper(II) will be reported elsewhere.  相似文献   

3.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

4.
The reactions of mono‐ and bidentate aromatic nitrogen‐containing ligands with [Ru(CO)3Cl2]2 in alcohols have been studied. In alcoholic media the nitrogen ligands act as bases promoting acidic behaviour of alcohols and the formation of alkoxy carbonyls [Ru(N–N)(CO)2Cl(COOR)] and [Ru(N)2(CO)2Cl(COOR)]. Other products are monomers of type [Ru(N)(CO)3Cl2], bridged complexes such as [Ru(CO)3Cl2]2(N), and ion pairs of the type [Ru(CO)3Cl3]? [Ru(N–N)(CO)3Cl]+ (N–N = chelating aromatic nitrogen ligand, N = non‐chelating or bridging ligand). The reaction and the product distribution can be controlled by adjusting the reaction stoichiometry. The reactivity of the new ruthenium complexes was tested in 1‐hexene hydroformylation. The activity can be associated with the degree of stability of the complexes and the ruthenium–ligand interaction. Chelating or bridging nitrogen ligands suppresses the activity strongly compared with the bare ruthenium carbonyl chloride, while the decrease in activity is less pronounced with monodentate ligands. A plausible catalytic cycle is proposed and discussed in terms of ligand–ruthenium interactions. The reactivity of the ligands as well as the catalytic cycle was studied in detail using the computational DFT methods. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The title complex, [Ag4(C7H5O3)2(C8H6N2)4(C7H6O3)4], lies about an inversion centre and has a unique tetra­nuclear structure consisting of four AgI atoms bridged by four N atoms from two 1,8‐naphthyridine (napy) ligands to form an N:N′‐bridge and four O atoms from two salicylate (SA) ligands to form an O:O′‐bridge. The Ag atoms have distorted octa­hedral coordination geometry. The centrosymmetric Ag4 ring has Ag—Ag separations of 2.772 (2) and 3.127 (2) Å, and Ag—Ag—Ag angles of 107.70 (4) and 72.30 (4)°. All SA hydroxy groups take part in intra­molecular O—H⋯O hydrogen bonding. In the crystal packing, the napy rings are oriented parallel and overlap one another. These π–π inter­actions, together with weak inter­molecular C—H⋯O contacts, stabilize the crystal structure.  相似文献   

6.
A new class of half‐sandwich (η6p‐cymene) ruthenium(II) complexes supported by 2‐aminofluorene derivatives [Ru(η6p‐cymene)(Cl)(L)] ( L  = 2‐(((9H‐fluoren‐2‐yl)imino)methyl)phenol ( L 1 ), 2‐(((9H‐fluoren‐2‐yl)imino)methyl)‐3‐methoxyphenol ( L 2 ), 1‐(((9H‐fluoren‐2‐yl)imino)methyl)naphthalene‐2‐ol ( L 3 ) and N‐((1H‐pyrrol‐2‐yl)methylene)‐9H‐fluorene‐2‐amine ( L 4 )) were synthesized. All compounds were fully characterized by analytical and spectroscopic techniques (IR, UV–Vis, NMR) and also by mass spectrometry. The solid state molecular structures of the complexes [Ru(η6p‐cymene)(Cl)(L2)], [Ru(η6p‐cymene)(Cl)(L3)] and [Ru(η6p‐cymene)(Cl)(L4)] revealed that the 2‐aminofluorene and p‐cymene moieties coordinate to ruthenium(II) in a three‐legged piano‐stool geometry. The synthesized complexes were used as catalysts for the dehydrogenative coupling of benzyl alcohol with a range of amines (aliphatic, aromatic and heterocyclic). The reactions were carried out under thermal heating, ultrasound and microwave assistance, using solvent or solvent free conditions, and the catalytic performance was optimized regarding the solvent, the type of base, the catalyst loading and the temperature. Moderately high to very high isolated yields were obtained using [Ru(η6p‐cymene)(Cl)(L4)] at 1 mol%. In general, microwave irradiation produced better yields than the other two techniques irrespective of the nature of the substituents.  相似文献   

7.
For a long time, the cobalt(II) complex ([Co(napy)4](ClO4)2) (napy=1, 8‐naphthyridine) has been considered as an eight‐coordinate complex without any structural proof. After careful considerations, two complexes [Co(napy)2Cl2] ( 1 ) and [Co(napy)4](ClO4)2 ( 2 ) based on the bidentate ligand napy were synthesized and structurally characterized. X‐ray single‐crystal structural determination showed that the cobalt(II) center in [Co(napy)2Cl2] ( 1 ) is four‐coordinate with a tetrahedral geometry (Td), while [Co(napy)4](ClO4)2 ( 2 ) is seven‐coordinate rather than eight‐coordinate with a capped trigonal prism geometry (C2v). Direct‐current (dc) magnetic data revealed that complexes 1 and 2 possess positive zero‐field splitting (ZFS) parameters of 11.08 and 25.30 cm?1, respectively, with easy‐plane magnetic anisotropy. Alternating current(ac) susceptibility measurements revealed that both complexes showed slow magnetic relaxation behaviour. Theoretical calculations demonstrated that the presence of easy‐plane magnetic anisotropy (D>0) for complexes 1 and 2 is in agreement with the experimental data. Furthermore, these results pave the way to obtain four‐coordinate and seven‐coordinate cobalt(II) single‐ion magnets (SIMs) by using a bidentate ligand.  相似文献   

8.
The conformational isomers endo‐ and exo‐[Mo{η3‐C3H4(CH3)}(η2‐pyS)(CO)(η2‐diphos)] (diphos: dppm = {bis(diphenylphosphino)methane}, 2 ; dppe = {1,2‐bis(diphenylphosphino)ethane}, 3 ) are prepared by reacting the double‐bridged pyridine‐2‐thionate (pyS) complex [Mo{η3‐C3H4(CH3)}(CO)2]212:μ‐pyS)2, 1 with diphos in refluxing acetonitrile. Stereoselectivity of the methallyl, C3H4(CH3), ligand improves the formation of the exo‐conformation of 2 and 3 . Orientations and spectroscopy of these complexes are discussed.  相似文献   

9.
The synthesis and characterization of Ru (II) terpyridine complexes derived from 4′ functionalized 2,2′:6′,2″‐terpyridine (tpy) ligands are reported. The heteroleptic complexes comprise the synthesized ligands 4′‐(2‐thienyl)‐ 2,2′:6′,2″‐terpyridine) or (4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine and (dimethyl 5‐(pyrimidin‐5‐yl)isophthalate). The new complexes [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 9 ), [Ru(4′‐(3,4‐dimethoxyphenyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)Cl2] ( 10 ), and [Ru(4′‐(2‐thienyl)‐2,2′:6′,2″‐terpyridine)(5‐(pyrimidin‐5‐yl)‐isophthalic acid)(NCS)2] ( 11 ) were characterized by 1H‐ and 13C‐NMR spectroscopy, C, H, N, and S elemental analysis, UPLC‐ESI‐MS, TGA, FT‐IR, and UV‐Vis spectroscopy. The biological activities of the synthesized ligands and their Ru (II) complexes as anti‐inflammatory, antimicrobial, and anticancer agents were evaluated. Furthermore, the toxicity of the synthesized compounds was studied and compared with the standard drugs, namely, diclofenac potassium and ibuprofen, using hemolysis assay. The results indicated that the ligands and the complex 9 possess superior anti‐inflammatory activities inhibiting albumin denaturation (89.88–100%) compared with the standard drugs (51.5–88.37%) at a concentration of 500 μg g?1. These activities were related to the presence of the chelating N‐atoms in the ligands and the exchangeable chloro‐ groups in the complex. Moreover, the chloro‐ and thiophene groups in complex 9 produce a higher anticancer activity compared with its isothiocyanate derivative in the complex 11 and the 3,4‐dimethoxyphenyl moiety in complex 10 . Considering the toxicity results, the synthesized ligands are nontoxic or far less toxic compared with the standard drugs and the metal complexes. Therefore, these newly synthesized compounds are promising anti‐inflammatory agents in addition to their moderate unique broad antimicrobial activity.  相似文献   

10.
The controlled potential electrolysis of [Ru(bpy)(napy)2(CO)2](BF4)2 ( 1 ; bpy=2,2′‐bipyridine, napy=1,8‐naphthyridine) in the presence of LiBF4 in CO2‐saturated DMSO at −1.65 V (vs. Ag/Ag+) produced CO and Li2CO3 [Eq. (a)], while similar electrolysis in the presence of (CH3)4NBF4 resulted in formation of acetone together with (CH3)3N and {(CH3)4N}2CO3 [Eq. (b)]. This represents the first almost selective generation of acetone upon electrochemical reduction of CO2. The selectivity is ascribed to depression of reductive cleavage of the Ru−CO bond of 1 due to an attack of the nonbonded nitrogen atom of napy at the carbonyl carbon atom.  相似文献   

11.
Two new aminophosphines – furfuryl‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3O] ( 1 ) and thiophene‐(N‐dicyclohexylphosphino)amine, [Cy2PNHCH2–C4H3S] ( 2 ) – were prepared by the reaction of chlorodicyclohexylphosphine with furfurylamine and thiophene‐2‐methylamine. Reaction of the aminophosphines with [Ru(η6p‐cymene)(μ‐Cl)Cl]2 or [Ru(η6‐benzene)(μ‐Cl)Cl]2 gave corresponding complexes [Ru(Cy2PNHCH2–C4H3O)(η6p‐cymene)Cl2] ( 1a ), [Ru(Cy2PNHCH2–C4H3O)(η6‐benzene)Cl2] ( 1b ), [Ru(Cy2PNHCH2–C4H3S)(η6p‐cymene)Cl2] ( 2a ) and [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] ( 2b ), respectively, which are suitable catalyst precursors for the transfer hydrogenation of ketones. In particular, [Ru(Cy2PNHCH2–C4H3S)(η6‐benzene)Cl2] acts as a good catalyst, giving the corresponding alcohols in 98–99% yield in 30 min at 82 °C (up to time of flight ≤ 588 h?1). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Substitution of silver complex of 2‐chloro‐7‐(mesitylimidazolylidenylmethyl)naphthyridine (NpNHC) with palladium(II), rhodium(I) and iridium(I) metal precursors provided [Pd(C ,N ‐NpNHC)(η3‐allyl)](BF4) ( 5 ), RhCl(COD)(C ‐NpNHC) ( 6a ) and IrCl(COD)(C ‐NpNHC) ( 6b ), respectively. Abstraction of chloride from 6a and 6b with AgBF4 provided the chelation complexes [Rh(COD)(C ,N ‐NpNHC)](BF4) ( 7a ) and Ir(COD)(C ,N ‐NpNHC)(BF4) ( 7b ), respectively. All complexes were characterized using NMR and elemental analyses and the structural details of 5 and 6a were further confirmed using X‐ray crystallography. In catalytic activity studies, complex 5 was found to be an effective catalyst in the hydrogen‐transfer reduction of α,β‐unsaturated carbonyl compounds into the corresponding saturated carbonyl compounds.  相似文献   

13.
Crystallization experiments with the dinuclear chelate ring complex di‐μ‐chlorido‐bis[(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)platinum(II)], [Pt2(C15H19O4)2Cl2], containing a derivative of the natural compound eugenol as ligand, have been performed. Using five different sets of crystallization conditions resulted in four different complexes which can be further used as starting compounds for the synthesis of Pt complexes with promising anticancer activities. In the case of vapour diffusion with the binary chloroform–diethyl ether or methylene chloride–diethyl ether systems, no change of the molecular structure was observed. Using evaporation from acetonitrile (at room temperature), dimethylformamide (DMF, at 313 K) or dimethyl sulfoxide (DMSO, at 313 K), however, resulted in the displacement of a chloride ligand by the solvent, giving, respectively, the mononuclear complexes (acetonitrile‐κN)(η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chloridoplatinum(II) monohydrate, [Pt(C15H19O4)Cl(CH3CN)]·H2O, (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethylformamide‐κO)platinum(II), [Pt(C15H19O4)Cl(C2H7NO)], and (η2‐2‐allyl‐4‐methoxy‐5‐{[(propan‐2‐yloxy)carbonyl]methoxy}phenyl‐κC1)chlorido(dimethyl sulfoxide‐κS)platinum(II), determined as the analogue {η2‐2‐allyl‐4‐methoxy‐5‐[(ethoxycarbonyl)methoxy]phenyl‐κC1}chlorido(dimethyl sulfoxide‐κS)platinum(II), [Pt(C14H17O4)Cl(C2H6OS)]. The crystal structures confirm that acetonitrile interacts with the PtII atom via its N atom, while for DMSO, the S atom is the coordinating atom. For the replacement, the longest of the two Pt—Cl bonds is cleaved, leading to a cis position of the solvent ligand with respect to the allyl group. The crystal packing of the complexes is characterized by dimer formation via C—H…O and C—H…π interactions, but no π–π interactions are observed despite the presence of the aromatic ring.  相似文献   

14.
The title compounds, [Cr(C12H10)(CO)3] and [Cr2(C12H10)(CO)6], serve as a fundamental standard of comparison for other mono‐ and polysubstituted (η6‐bi­phenyl)­tri­carbonyl­chromium compounds. (η6‐Bi­phenyl)­tri­carbonyl­chromium has a typical piano‐stool coordination about the Cr center, and the dihedral angle between the planes of the phenyl rings is 23.55 (5)°. The corresponding angle in μ‐(η66)‐bi­phenyl‐bis­(tri­carbonyl­chromium) is 0° because the mol­ecule occupies a crystallographic inversion center; the Cr atoms reside on opposite sides of the bi­phenyl ligand. Density functional theory and natural bonding orbital theory analyses were used to scrutinize the geometry of these and closely related compounds to explain important structural features.  相似文献   

15.
Details of the direct synthesis of cationic Ru(II)(η5‐Cp)(η6‐arene) complexes from ruthenocene using microwave heating are reported. Developed for the important catalyst precursor [Ru(II)(η5‐Cp)(η6‐1‐4,4a,8a‐naphthalene)][PF6] reaction time could be shortened from three days to 15 min. The method was extended to [Ru(II)(η6‐benzene)(η5‐Cp)][PF6], [Ru(II)(η5‐Cp)(η6‐toluene)][PF6], [Ru(II)(η5‐Cp)(η6‐mesitylene)][PF6], [Ru(II)(η5‐Cp)(η6‐hexamethylbenzene)][PF6], [Ru(II)(η5Cp)(η6‐indane)][PF6], [Ru(II)(η5‐Cp)(η6‐2,6‐dimethylnaphthalene)][PF6], and [Ru(II)(η5‐Cp)(η6‐pyrene)][PF6]. 1‐methylnaphthalene and 2,3‐dimethylnaphthalene afforded mixtures of regioisomeric complexes. [Ru(Cp)(CH3CN)3][PF6], derived from the naphthalene precursor provided access to the cationic RuCp complexes of naphthoquinone, tetralindione, 1,4‐dihydroxynaphthalene, and 1,4‐dimethoxynaphthalene. Reduction of the tetralindione complex afforded selectively the endo,endo diol derivative. X‐Ray structures of five complexes are reported.  相似文献   

16.
Heteroleptic Ru(II) complexes were designed based on 4,4′‐bis((E)‐styryl)‐2,2′‐bipyridine (bsbpy) as an ancillary ligand for dye‐sensitized solar cells (DSSCs), and those Ru(II) sensitizers, [Ru(L)(bsbpy)(NCS)2][TBA] (TBA; tetrabutylammonium), were synthesized according to a typical one‐pot reaction of [RuCl2(p‐cymene)]2 with the corresponding anchoring ligands (where L = 4,4′‐dicarboxy‐2,2′‐bipyridine (dcbpy), 4,4′‐bis((E)‐carboxyvinyl)‐2,2′‐bipyridine (dcvbpy), 4,7‐dicarboxy‐1,10‐phenanthroline (dcphen), or 4,7‐bis((E)‐carboxyvinyl)‐1,10‐phenanthroline (dcvphen)). The new Ru(II) dyes, [Ru(L)(bsbpy)(NCS)2][TBA] that incorporated vinyl spacer(s) into ancillary and/or anchoring ligand displayed red‐shifted bands over the overall UV/VIS region relative to the absorption spectra of N719 . A combination of bsbpy ancillary and dcphen anchoring ligand showed the best result for the overall power conversion efficiency (η); i.e., a DSSC fabricated with [Ru(dcphen)(bsbpy)(NCS)2][TBA] exhibited a power conversion efficiency (η) of 2.98% (compare to N719 , 4.82%).  相似文献   

17.
Reaction of [Ru(η6p‐cymene)Cl2]2 with two equivalents of [Ph4P][Cl] in CH2Cl2 yields [Ph4P][Ru(η6p‐cymene)Cl3], containing a trichlororuthenate(II) anion. In solution, an equilibrium between the product and [Ru(η6p‐cymene)Cl2]2 is observed, which in CDCl3 is nearly completely shifted to the dimer, whereas in CD2Cl2 essentially a 1:1‐mixture of the two ruthenium species is present. Crystallization from CH2Cl2/pentane yielded two different crystals, which were identified by X‐ray analysis as [Ph4P][Ru(η6p‐cymene)Cl3] and [Ph4P][Ru(η6p‐cymene)Cl3]·CH2Cl2.  相似文献   

18.
PhotoCORMs (photo‐active CO‐releasing molecules) have emerged as a class of CO donors where the CO release process can be triggered upon illumination with light of appropriate wavelength. We have recently reported an Mn‐based photoCORM, namely [MnBr(pbt)(CO)3] [pbt is 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole], where the CO release event can be tracked within cellular milieu by virtue of the emergence of strong blue fluorescence. In pursuit of developing more such trackable photoCORMs, we report herein the syntheses and structural characterization of two MnI–carbonyl complexes, namely fac‐tricarbonylchlorido[2‐(pyridin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C12H8N2S)(CO)3], (1), and fac‐tricarbonylchlorido[2‐(quinolin‐2‐yl)‐1,3‐benzothiazole‐κ2N ,N ′]manganese(I), [MnCl(C16H10N2S)(CO)3], (2). In both complexes, the MnI center resides in a distorted octahedral coordination environment. Weak intermolecular C—H…Cl contacts in complex (1) and Cl…S contacts in complex (2) consolidate their extended structures. These complexes also exhibit CO release upon exposure to low‐power broadband visible light. The apparent CO release rates for the two complexes have been measured to compare their CO donating capacity. The fluorogenic 2‐(pyridin‐2‐yl)‐1,3‐benzothiazole and 2‐(quinolin‐2‐yl)‐1,3‐benzothiazole ligands provide a convenient way to track the CO release event through the `turn‐ON' fluorescence which results upon de‐ligation of the ligands from their respective metal centers following CO photorelease.  相似文献   

19.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

20.
Isomerically pure nitrile complexes cis‐[Ru(dppm)2Cl(NCR)]+ ( 2 a – d ) are formed upon chloride displacement from cis‐[Ru(dppm)2Cl2] ( 1 ) or, alternatively, by ligand substitution from the acetonitrile complex 2 a . This latter approach does also allow for the introduction of pyridine ( 3 a , b ), heptamethyldisilazane ( 4 ) or isonitrile ligands ( 5 ). All complexes are obtained as the configurationally stable cis‐isomers. Only cis‐[Ru(dppm)2Cl(CNtBu)]+ slowly isomerizes to the trans from. The solid state structures of the CH3CN, C2H5CN and the trans‐tBuNC complexes were established by X‐ray crystallography. Electrochemical investigations of the nitrile complexes 2 a – d show in addition to a chemically reversible one‐electron oxidation an irrversible reduction step. In CH2Cl2 solution, cis‐ and trans‐[Ru(dppm)2Cl2] have been identified as the final products of the electrochemically induced reaction sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号